Binary Tree Traversal系列

 

Binary Tree Preorder Traversal

 

 

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

 

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

 

先序遍历的基本思想就是先访问根元素,再访问左子树,然后访问右子树。

那么递归的代码就很容易实现,如下:

 

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> ans;
        preOrder(root, ans);
        return ans;
    }

    void preOrder(TreeNode* root, vector<int>& v)
    {
        if( root )
        {
            v.push_back(root->val);
            preOrder(root->left, v);
            preOrder(root->right, v);
        }
    }
};

 

迭代的方式呢?递归转化为迭代的方式,总是可以用栈来实现,不过就是不好理解。不过观察递归的方式,程序是访问根元素,然后再访问“左子树”,接着继续访问“右子树”,那么在栈中的存放方式,应该是取出,访问,然后先放入“右子树”,再放入“左子树”。

其他就需要看代码体会了~~~~~~

 

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
        if( !root )
            return vector<int>();
        vector<int> ans;
        stack<TreeNode*> st;
        st.push(root);
        while( !st.empty() ) {
            TreeNode* p = st.top();
            st.pop();
            ans.push_back(p->val);
            if( p->right )
                st.push(p->right);
            if( p->left )
                st.push(p->left);
        }
        return ans;
    }
};


 

Binary Tree Inorder Traversal

 

 

Given a binary tree, return the inorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

 

return [1,3,2].

Note: Recursive solution is trivial, could you do it iteratively?

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

 

中序遍历的基本思想是先访问左子树,再访问根元素,然后访问右子树 。
递归代码如下:
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode *root) {
        vector<int> ans;
        inorder(ans, root);
        return ans;
    }
    
    void inorder(vector<int>& v, TreeNode* root) {
        if( !root )
            return ;
        inorder(v, root->left);
        v.push_back(root->val);
        inorder(v, root->right);
    }
};

坑爹的迭代方式,记住节点被访问的条件是以其为根的二叉树的左子树被访问完了,这时该节点才被访问。
代码如下:
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode *root) {
        vector<int> ans;
        if(!root)
            return ans;
        stack<TreeNode*> st;
        TreeNode* ptree = root;
        while( ptree ) {                //从根元素开始,将左孩子依次放入栈中
            st.push(ptree);
            ptree = ptree->left;
        }
        while( !st.empty() ) {
            ptree = st.top();           //每次取出的节点都是未访问的最左节点
            st.pop();
            ans.push_back(ptree->val);  //取出元素访问
            ptree = ptree->right;       //这时可以认为这个节点为根的子树的左子树已访问完,根元素也访问完
            while( ptree ) {            //从右子树的根节点开始,依次放入节点至栈中
                st.push(ptree);
                ptree = ptree->left;
            }
        }
        return ans;
    }
};

Binary Tree Postorder Traversal

 

 

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

 

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

 

后序遍历的基本思想是先访问左子树,再访问访问右子树,然后继续根元素。
递归代码如下:
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> v;
        postOrder(root, v);
        return v;
    }

    void postOrder(TreeNode* root, vector<int>& v) {
        if( root ) {
            postOrder(root->left, v);
            postOrder(root->right, v);
            v.push_back(root->val);
        }
    }
};

迭代的方式非常不好理解,说下一般步骤:
1)栈中先放入根节点,并记录前驱节点
2)从栈中取出节点,如果当前节点的左右孩子均不存在,则访问当前节点,如果当前节点的左孩子或右孩子等于前驱节点,则访问当前节点,其他情况,则不访问当前节点,并将当前节点右孩子和左孩子一次放入栈中,重复步骤2
代码如下:
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> ans;
        if( !root )
            return ans;

        stack<TreeNode*> s;
        s.push(root);               //压入根节点
        TreeNode* pPre = NULL;
        while( !s.empty() ) {
            TreeNode* pCur = s.top();

            if( ( pCur->left == NULL && pCur->right == NULL )       //若当前节点左右孩子均为空 或 前驱节点等于当前节点左孩子或右孩子
               || ( pPre != NULL && ( pPre == pCur->left || pPre == pCur->right ) ) ) {
                ans.push_back( pCur->val );                         //则访问
                pPre = pCur;
                s.pop();
            }
            else {                                                  //否则先放入右孩子,再放入左孩子
                if( pCur->right )
                    s.push( pCur->right );
                if( pCur->left )
                    s.push( pCur->left );
            }
        }
        return ans;
    }
};



 

 

posted on 2014-08-12 21:00  bug睡的略爽  阅读(129)  评论(0编辑  收藏  举报

导航