用Sqoop实现数据HDFS到mysql到Hive

【Hive】用Sqoop实现数据HDFS到mysql到Hive
大数据协作框架
“大数据协作框架”其实是一个统称,主要是以下四个框架
  • 数据转换工具    Sqoop
  • 文件收集库框架    Flume
  • 任务调度框架    Oozie
  • 大数据WEB工具Hue
 
Sqoop作用
将关系数据库中的某张表数据抽取到Hadoop的HDFS文件系统中,底层运行的还是MapReduce。
利用MapReduce加快数据传输速度。
批处理方式进行数据传输。
也可以将HDFS上的文件数据或者Hive表中的数据导出到关系型数据库当中的某张表中。
 
HDFS →RDBMS
  1. sqoop export \
  2. --connect jdbc:mysql://xxx:3306/xxx \
  3. --username xxx \
  4. --password xxx \
  5. --table xxx \
  6. --export-dir xxx
RDBMS→Hive
  1. sqoop import \
  2. --connect jdbc:mysql://xxx:3306/xxx \
  3. --username xxx \
  4. --password xxx \
  5. --fields-terminated-by "\t" \
  6. --table xxx \
  7. --hive-import \
  8. --hive-table xxx
Hive→RDBMS
  1. sqoop export \
  2. --connect jdbc:mysql://xxx:3306/xxx \
  3. --username xxx \
  4. --password xxx \
  5. --table xxx \
  6. --export-dir xxx \
  7. --input-fields-terminated-by '\t'
RDBMS→HDFS
  1. sqoop import \
  2. --connect jdbc:mysql://xxx:3306/xxx \
  3. --username xxx \
  4. --password xxx \
  5. --table xxx \
  6. --target-dir xxx
规律:
  1. 从RDBMS导入到HDFS或者Hive中的都使用import;从HDFS或者Hive导出到RDBMS中的都使用export;以HDFS和Hive为参考,根据数据流向选择关键字。
  2. connect、username、password、table四个参数为每一种传输都必须的;其中connect参数格式均为--connect jdbc:mysql://主机名:3306/数据库名(使用mysql数据库);table是指明mysql中的表名。
  3. export-dir参数只有在导出数据到RDBMS中时才会用到,含义为表在hdfs中存放的路径。
区别:
  • HDFS →RDBMS:指明table:mysql中的表,需要自行先创建;指明export-dir:HDFS中数据的存储路径
  • RDBMS→Hive:指明fields-terminated-by:指定分隔符,分隔符指的是存放在Hive中的数据的分隔符,如果目标将存储在Hive中可理解为编码格式,若目标将存储在RDBMS上,则可理解为解码格式;指明table:mysql中的表名;指明hive-import:导入到hive操作;指明hive-table:hive中的表名。注意:table参数不可以与用户家目录下已存在的目录重名,因为sqoop导数据到hive会先将数据导入到HDFS上,然后再将数据load到hive中,最后把这个目录再删除掉。
  • Hive→RDBMS:指明table:mysql中的表名;指明export-dir:hive在hdfs中存储的路径;指明hive-table:hive中的表名。
  • RDBMS→HDFS:指明table:mysql里的表名;指明target-dir:hdfs存储数据的目录;
 
Sqoop安装
配置Sqoop1.x
conf目录【sqoop-env-template.sh】
  • export HADOOP_COMMON_HOME=Hadoop目录
  • export HADOOP_MAPRED_HOME=Hadoop目录
  • export HIVE_HOME=Hive目录
  • export ZOOCFGDIR=Zookeeper目录
将mysqlJDBC驱动包拷到sqoop的lib目录下
测试sqoop
  1. bin/sqoop list-databases \
  2. --connect jdbc:mysql://主机名:3306 \
  3. --username root \
  4. --password 123456 \
查看本地mysql
  1. mysql> show databases;
  2. +--------------------+
  3. | Database |
  4. +--------------------+
  5. | information_schema |
  6. | metastore |
  7. | mysql |
  8. | test |
  9. +--------------------+
  10. 4 rows in set (0.00 sec)
  11. mysql> use test;
  12. Reading table information for completion of table and column names
  13. You can turn off this feature to get a quicker startup with -A
  14. Database changed
  15. mysql> show tables;
  16. +----------------+
  17. | Tables_in_test |
  18. +----------------+
  19. | my_user |
  20. +----------------+
  21. 1 row in set (0.00 sec)
  22. mysql> desc my_user;
  23. +---------+--------------+------+-----+---------+----------------+
  24. | Field | Type | Null | Key | Default | Extra |
  25. +---------+--------------+------+-----+---------+----------------+
  26. | id | tinyint(4) | NO | PRI | NULL | auto_increment |
  27. | account | varchar(255) | YES | | NULL | |
  28. | passwd | varchar(255) | YES | | NULL | |
  29. +---------+--------------+------+-----+---------+----------------+
  30. 3 rows in set (0.00 sec)
  31. mysql> select * from my_user;
  32. +----+----------+----------+
  33. | id | account | passwd |
  34. +----+----------+----------+
  35. | 1 | admin | admin |
  36. | 2 | johnny | 123456 |
  37. | 3 | zhangsan | zhangsan |
  38. | 4 | lisi | lisi |
  39. | 5 | test | test |
  40. | 6 | qiqi | qiqi |
  41. | 7 | hangzhou | hangzhou |
  42. +----+----------+----------+
  43. 7 rows in set (0.00 sec)
hive创建相同结构的空表
  1. hive (test)> create table h_user(
  2. > id int,
  3. > account string,
  4. > passwd string
  5. > )row format delimited fields terminated by '\t';
  6. OK
  7. Time taken: 0.113 seconds
  8. hive (test)> desc h_user;
  9. OK
  10. col_name data_type comment
  11. id int
  12. account string
  13. passwd string
  14. Time taken: 0.228 seconds, Fetched: 3 row(s)
从本地mysql导出数据到Hive里
  1. bin/sqoop import \
  2. --connect jdbc:mysql://cdaisuke:3306/test \
  3. --username root \
  4. --password 123456 \
  5. --table my_user \
  6. --num-mappers 1 \
  7. --delete-target-dir \
  8. --fields-terminated-by "\t" \
  9. --hive-database test \
  10. --hive-import \
  11. --hive-table h_user
  12. hive (test)> select * from h_user;
  13. OK
  14. h_user.id h_user.account h_user.passwd
  15. 1 admin admin
  16. 2 johnny 123456
  17. 3 zhangsan zhangsan
  18. 4 lisi lisi
  19. 5 test test
  20. 6 qiqi qiqi
  21. 7 hangzhou hangzhou
  22. Time taken: 0.061 seconds, Fetched: 7 row(s)
从mysql导入到HDFS里
  1. bin/sqoop import \
  2. --connect jdbc:mysql://cdaisuke:3306/test \
  3. --username root \
  4. --password 123456 \
  5. --table my_user \
  6. --num-mappers 3 \
  7. --target-dir /user/hadoop/ \
  8. --delete-target-dir \
  9. --fields-terminated-by "\t"
  10. ------------------------------------------------------------
  11. [hadoop@cdaisuke sqoop-1.4.5-cdh5.3.6]$ bin/sqoop import \
  12. > --connect jdbc:mysql://cdaisuke:3306/test \
  13. > --username root \
  14. > --password 123456 \
  15. > --table my_user \
  16. > --num-mappers 3 \
  17. > --target-dir /user/hadoop/ \
  18. > --delete-target-dir \
  19. > --fields-terminated-by "\t"
  20. 18/08/14 00:02:11 INFO sqoop.Sqoop: Running Sqoop version: 1.4.5-cdh5.3.6
  21. 18/08/14 00:02:11 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
  22. 18/08/14 00:02:12 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
  23. 18/08/14 00:02:12 INFO tool.CodeGenTool: Beginning code generation
  24. 18/08/14 00:02:13 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `my_user` AS t LIMIT 1
  25. 18/08/14 00:02:13 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `my_user` AS t LIMIT 1
  26. 18/08/14 00:02:13 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /opt/modules/hadoop-2.5.0-cdh5.3.6_Hive
  27. Note: /tmp/sqoop-hadoop/compile/7c8bdb7cd3df7b2f4b48700704f46f65/my_user.java uses or overrides a deprecated API.
  28. Note: Recompile with -Xlint:deprecation for details.
  29. 18/08/14 00:02:18 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/7c8bdb7cd3df7b2f4b48700704f46f65/my_user.jar
  30. 18/08/14 00:02:19 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  31. 18/08/14 00:02:22 INFO tool.ImportTool: Destination directory /user/hadoop is not present, hence not deleting.
  32. 18/08/14 00:02:22 WARN manager.MySQLManager: It looks like you are importing from mysql.
  33. 18/08/14 00:02:22 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
  34. 18/08/14 00:02:22 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
  35. 18/08/14 00:02:22 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
  36. 18/08/14 00:02:22 INFO mapreduce.ImportJobBase: Beginning import of my_user
  37. 18/08/14 00:02:22 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
  38. 18/08/14 00:02:22 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
  39. 18/08/14 00:02:23 INFO client.RMProxy: Connecting to ResourceManager at slave01/192.168.79.140:8032
  40. 18/08/14 00:02:28 INFO db.DBInputFormat: Using read commited transaction isolation
  41. 18/08/14 00:02:28 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `my_user`
  42. 18/08/14 00:02:28 INFO mapreduce.JobSubmitter: number of splits:3
  43. 18/08/14 00:02:28 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1533652222364_0078
  44. 18/08/14 00:02:29 INFO impl.YarnClientImpl: Submitted application application_1533652222364_0078
  45. 18/08/14 00:02:29 INFO mapreduce.Job: The url to track the job: http://slave01:8088/proxy/application_1533652222364_0078/
  46. 18/08/14 00:02:29 INFO mapreduce.Job: Running job: job_1533652222364_0078
  47. 18/08/14 00:02:50 INFO mapreduce.Job: Job job_1533652222364_0078 running in uber mode : false
  48. 18/08/14 00:02:50 INFO mapreduce.Job: map 0% reduce 0%
  49. 18/08/14 00:03:00 INFO mapreduce.Job: map 33% reduce 0%
  50. 18/08/14 00:03:01 INFO mapreduce.Job: map 67% reduce 0%
  51. 18/08/14 00:03:02 INFO mapreduce.Job: map 100% reduce 0%
  52. 18/08/14 00:03:02 INFO mapreduce.Job: Job job_1533652222364_0078 completed successfully
  53. 18/08/14 00:03:02 INFO mapreduce.Job: Counters: 30
  54. File System Counters
  55. FILE: Number of bytes read=0
  56. FILE: Number of bytes written=394707
  57. FILE: Number of read operations=0
  58. FILE: Number of large read operations=0
  59. FILE: Number of write operations=0
  60. HDFS: Number of bytes read=295
  61. HDFS: Number of bytes written=106
  62. HDFS: Number of read operations=12
  63. HDFS: Number of large read operations=0
  64. HDFS: Number of write operations=6
  65. Job Counters
  66. Launched map tasks=3
  67. Other local map tasks=3
  68. Total time spent by all maps in occupied slots (ms)=25213
  69. Total time spent by all reduces in occupied slots (ms)=0
  70. Total time spent by all map tasks (ms)=25213
  71. Total vcore-seconds taken by all map tasks=25213
  72. Total megabyte-seconds taken by all map tasks=25818112
  73. Map-Reduce Framework
  74. Map input records=7
  75. Map output records=7
  76. Input split bytes=295
  77. Spilled Records=0
  78. Failed Shuffles=0
  79. Merged Map outputs=0
  80. GC time elapsed (ms)=352
  81. CPU time spent (ms)=3600
  82. Physical memory (bytes) snapshot=316162048
  83. Virtual memory (bytes) snapshot=2523156480
  84. Total committed heap usage (bytes)=77766656
  85. File Input Format Counters
  86. Bytes Read=0
  87. File Output Format Counters
  88. Bytes Written=106
  89. 18/08/14 00:03:02 INFO mapreduce.ImportJobBase: Transferred 106 bytes in 40.004 seconds (2.6497 bytes/sec)
  90. 18/08/14 00:03:02 INFO mapreduce.ImportJobBase: Retrieved 7 records.
设置3个map任务
--num-mappers 3 \
设置HDFS目标存储目录
--target-dir /user/hadoop/ \
如果设置目录存在则删除此目录
--delete-target-dir \
从Hive导出到mysql
在mysql创建新表
  1. create table user_export(
  2. id tinyint(4) not null auto_increment,
  3. account varchar(255) default null,
  4. passwd varchar(255) default null,
  5. primary key(id)
  6. );
用sqoop导出数据
  1. bin/sqoop export \
  2. --connect jdbc:mysql://cdaisuke:3306/test \
  3. --username root \
  4. --password 123456 \
  5. --table user_export \
  6. --num-mappers 1 \
  7. --fields-terminated-by "\t" \
  8. --export-dir /user/hive/warehouse/test.db/h_user
  9. ----------------------------------------------------
  10. [hadoop@cdaisuke sqoop-1.4.5-cdh5.3.6]$ bin/sqoop export \
  11. > --connect jdbc:mysql://cdaisuke:3306/test \
  12. > --username root \
  13. > --password 123456 \
  14. > --table user_export \
  15. > --num-mappers 1 \
  16. > --fields-terminated-by "\t" \
  17. > --export-dir /user/hive/warehouse/test.db/h_user
  18. Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
  19. 18/08/14 00:16:32 INFO sqoop.Sqoop: Running Sqoop version: 1.4.5-cdh5.3.6
  20. 18/08/14 00:16:32 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
  21. 18/08/14 00:16:33 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
  22. 18/08/14 00:16:33 INFO tool.CodeGenTool: Beginning code generation
  23. 18/08/14 00:16:34 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `user_export` AS t LIMIT 1
  24. 18/08/14 00:16:34 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `user_export` AS t LIMIT 1
  25. 18/08/14 00:16:34 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /opt/modules/hadoop-2.5.0-cdh5.3.6_Hive
  26. Note: /tmp/sqoop-hadoop/compile/6823ffae505b34f7ae8b9881bae4b898/user_export.java uses or overrides a deprecated API.
  27. Note: Recompile with -Xlint:deprecation for details.
  28. 18/08/14 00:16:39 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/6823ffae505b34f7ae8b9881bae4b898/user_export.jar
  29. 18/08/14 00:16:39 INFO mapreduce.ExportJobBase: Beginning export of user_export
  30. 18/08/14 00:16:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  31. 18/08/14 00:16:40 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
  32. 18/08/14 00:16:43 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
  33. 18/08/14 00:16:43 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
  34. 18/08/14 00:16:43 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
  35. 18/08/14 00:16:43 INFO client.RMProxy: Connecting to ResourceManager at slave01/192.168.79.140:8032
  36. 18/08/14 00:16:48 INFO input.FileInputFormat: Total input paths to process : 1
  37. 18/08/14 00:16:48 INFO input.FileInputFormat: Total input paths to process : 1
  38. 18/08/14 00:16:48 INFO mapreduce.JobSubmitter: number of splits:1
  39. 18/08/14 00:16:48 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
  40. 18/08/14 00:16:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1533652222364_0079
  41. 18/08/14 00:16:50 INFO impl.YarnClientImpl: Submitted application application_1533652222364_0079
  42. 18/08/14 00:16:50 INFO mapreduce.Job: The url to track the job: http://slave01:8088/proxy/application_1533652222364_0079/
  43. 18/08/14 00:16:50 INFO mapreduce.Job: Running job: job_1533652222364_0079
  44. 18/08/14 00:17:11 INFO mapreduce.Job: Job job_1533652222364_0079 running in uber mode : false
  45. 18/08/14 00:17:11 INFO mapreduce.Job: map 0% reduce 0%
  46. 18/08/14 00:17:27 INFO mapreduce.Job: map 100% reduce 0%
  47. 18/08/14 00:17:27 INFO mapreduce.Job: Job job_1533652222364_0079 completed successfully
  48. 18/08/14 00:17:27 INFO mapreduce.Job: Counters: 30
  49. File System Counters
  50. FILE: Number of bytes read=0
  51. FILE: Number of bytes written=131287
  52. FILE: Number of read operations=0
  53. FILE: Number of large read operations=0
  54. FILE: Number of write operations=0
  55. HDFS: Number of bytes read=258
  56. HDFS: Number of bytes written=0
  57. HDFS: Number of read operations=4
  58. HDFS: Number of large read operations=0
  59. HDFS: Number of write operations=0
  60. Job Counters
  61. Launched map tasks=1
  62. Data-local map tasks=1
  63. Total time spent by all maps in occupied slots (ms)=13426
  64. Total time spent by all reduces in occupied slots (ms)=0
  65. Total time spent by all map tasks (ms)=13426
  66. Total vcore-seconds taken by all map tasks=13426
  67. Total megabyte-seconds taken by all map tasks=13748224
  68. Map-Reduce Framework
  69. Map input records=7
  70. Map output records=7
  71. Input split bytes=149
  72. Spilled Records=0
  73. Failed Shuffles=0
  74. Merged Map outputs=0
  75. GC time elapsed (ms)=73
  76. CPU time spent (ms)=1230
  77. Physical memory (bytes) snapshot=113061888
  78. Virtual memory (bytes) snapshot=838946816
  79. Total committed heap usage (bytes)=45613056
  80. File Input Format Counters
  81. Bytes Read=0
  82. File Output Format Counters
  83. Bytes Written=0
  84. 18/08/14 00:17:27 INFO mapreduce.ExportJobBase: Transferred 258 bytes in 44.2695 seconds (5.8279 bytes/sec)
  85. 18/08/14 00:17:27 INFO mapreduce.ExportJobBase: Exported 7 records.
  86. -----------------------------------------------------------------
  87. mysql> select * from user_export;
  88. +----+----------+----------+
  89. | id | account | passwd |
  90. +----+----------+----------+
  91. | 1 | admin | admin |
  92. | 2 | johnny | 123456 |
  93. | 3 | zhangsan | zhangsan |
  94. | 4 | lisi | lisi |
  95. | 5 | test | test |
  96. | 6 | qiqi | qiqi |
  97. | 7 | hangzhou | hangzhou |
  98. +----+----------+----------+
  99. 7 rows in set (0.00 sec)
从HDFS导出到mysql
在mysql创建新表
 
  1. create table my_user2(
  2. id tinyint(4) not null auto_increment,
  3. account varchar(255) default null,
  4. passwd varchar(255) default null,
  5. primary key (id)
  6. );
  7. ---------------------------------------------------------
  8. [hadoop@cdaisuke sqoop-1.4.5-cdh5.3.6]$ bin/sqoop export \
  9. > --connect jdbc:mysql://cdaisuke:3306/test \
  10. > --username root \
  11. > --password 123456 \
  12. > --table my_user2 \
  13. > --num-mappers 1 \
  14. > --fields-terminated-by "\t" \
  15. > --export-dir /user/hadoop
  16. Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
  17. 18/08/14 00:39:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.5-cdh5.3.6
  18. 18/08/14 00:39:51 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
  19. 18/08/14 00:39:52 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
  20. 18/08/14 00:39:52 INFO tool.CodeGenTool: Beginning code generation
  21. 18/08/14 00:39:53 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `my_user2` AS t LIMIT 1
  22. 18/08/14 00:39:53 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `my_user2` AS t LIMIT 1
  23. 18/08/14 00:39:53 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /opt/modules/hadoop-2.5.0-cdh5.3.6_Hive
  24. Note: /tmp/sqoop-hadoop/compile/7222f42cd6507a21fdcef7600bd14a20/my_user2.java uses or overrides a deprecated API.
  25. Note: Recompile with -Xlint:deprecation for details.
  26. 18/08/14 00:39:59 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/7222f42cd6507a21fdcef7600bd14a20/my_user2.jar
  27. 18/08/14 00:39:59 INFO mapreduce.ExportJobBase: Beginning export of my_user2
  28. 18/08/14 00:40:00 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  29. 18/08/14 00:40:00 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
  30. 18/08/14 00:40:04 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
  31. 18/08/14 00:40:04 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
  32. 18/08/14 00:40:04 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
  33. 18/08/14 00:40:04 INFO client.RMProxy: Connecting to ResourceManager at slave01/192.168.79.140:8032
  34. 18/08/14 00:40:09 INFO input.FileInputFormat: Total input paths to process : 3
  35. 18/08/14 00:40:09 INFO input.FileInputFormat: Total input paths to process : 3
  36. 18/08/14 00:40:09 INFO mapreduce.JobSubmitter: number of splits:1
  37. 18/08/14 00:40:09 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
  38. 18/08/14 00:40:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1533652222364_0084
  39. 18/08/14 00:40:11 INFO impl.YarnClientImpl: Submitted application application_1533652222364_0084
  40. 18/08/14 00:40:11 INFO mapreduce.Job: The url to track the job: http://slave01:8088/proxy/application_1533652222364_0084/
  41. 18/08/14 00:40:11 INFO mapreduce.Job: Running job: job_1533652222364_0084
  42. 18/08/14 00:40:30 INFO mapreduce.Job: Job job_1533652222364_0084 running in uber mode : false
  43. 18/08/14 00:40:30 INFO mapreduce.Job: map 0% reduce 0%
  44. 18/08/14 00:40:46 INFO mapreduce.Job: map 100% reduce 0%
  45. 18/08/14 00:40:46 INFO mapreduce.Job: Job job_1533652222364_0084 completed successfully
  46. 18/08/14 00:40:46 INFO mapreduce.Job: Counters: 30
  47. File System Counters
  48. FILE: Number of bytes read=0
  49. FILE: Number of bytes written=131229
  50. FILE: Number of read operations=0
  51. FILE: Number of large read operations=0
  52. FILE: Number of write operations=0
  53. HDFS: Number of bytes read=365
  54. HDFS: Number of bytes written=0
  55. HDFS: Number of read operations=10
  56. HDFS: Number of large read operations=0
  57. HDFS: Number of write operations=0
  58. Job Counters
  59. Launched map tasks=1
  60. Data-local map tasks=1
  61. Total time spent by all maps in occupied slots (ms)=13670
  62. Total time spent by all reduces in occupied slots (ms)=0
  63. Total time spent by all map tasks (ms)=13670
  64. Total vcore-seconds taken by all map tasks=13670
  65. Total megabyte-seconds taken by all map tasks=13998080
  66. Map-Reduce Framework
  67. Map input records=7
  68. Map output records=7
  69. Input split bytes=250
  70. Spilled Records=0
  71. Failed Shuffles=0
  72. Merged Map outputs=0
  73. GC time elapsed (ms)=89
  74. CPU time spent (ms)=1670
  75. Physical memory (bytes) snapshot=115961856
  76. Virtual memory (bytes) snapshot=838946816
  77. Total committed heap usage (bytes)=45613056
  78. File Input Format Counters
  79. Bytes Read=0
  80. File Output Format Counters
  81. Bytes Written=0
  82. 18/08/14 00:40:46 INFO mapreduce.ExportJobBase: Transferred 365 bytes in 42.3534 seconds (8.618 bytes/sec)
  83. 18/08/14 00:40:46 INFO mapreduce.ExportJobBase: Exported 7 records.
  84. ------------------------------------------------------------------------
  85. mysql> select * from my_user2;
  86. +----+----------+----------+
  87. | id | account | passwd |
  88. +----+----------+----------+
  89. | 1 | admin | admin |
  90. | 2 | johnny | 123456 |
  91. | 3 | zhangsan | zhangsan |
  92. | 4 | lisi | lisi |
  93. | 5 | test | test |
  94. | 6 | qiqi | qiqi |
  95. | 7 | hangzhou | hangzhou |
  96. +----+----------+----------+
  97. 7 rows in set (0.00 sec)
 
posted @ 2021-01-06 00:51  virtual_daemon  阅读(228)  评论(0编辑  收藏  举报