POJ 1050 To the Max 二维最大子段和
To the Max
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 52281 Accepted: 27633
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
题意:给你一个n*n 的矩形,要你求和最大的一个子矩形
题解:由一维的最大子段和变成了二维的最大子矩阵和,思想还是一样的,那就是保存每一段的最大和,然后更新最大值就行
将二维的看做一维,即控制第二维的深度去求最大子段和
代码如下:
#include <map> #include <set> #include <cmath> #include <ctime> #include <stack> #include <queue> #include <cstdio> #include <cctype> #include <bitset> #include <string> #include <vector> #include <cstring> #include <iostream> #include <algorithm> #include <functional> #define fuck(x) cout<<"["<<x<<"]"; #define FIN freopen("input.txt","r",stdin); #define FOUT freopen("output.txt","w+",stdout); //#pragma comment(linker, "/STACK:102400000,102400000") using namespace std; typedef long long LL; typedef pair<int, int> PII; const int maxn = 1e3+5; const int INF = 0x3f3f3f3f; int dp[maxn]; int mp[maxn][maxn]; int maxx; int main(){ #ifndef ONLINE_JUDGE FIN #endif int n; scanf("%d",&n); maxx=-1; for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&mp[i][j]); if(mp[i][j]>maxx){ maxx=mp[i][j]; } } } if(maxx<=0){ printf("%d\n",maxx); }else{ maxx=-1; int l,r; for(int i=1;i<=n;i++){ for(int j=1;j<=n-i+1;j++){ //控制所求子段的深度 l=i,r=j+i-1; dp[0]=0; for(int k=1;k<=n;k++){ //控制所求子段的长度 int tmp=0; for(int s=l;s<=r;s++){ tmp+=mp[k][s]; } dp[k]=max(dp[k-1]+tmp,tmp); maxx=max(dp[k],maxx); } } } printf("%d\n",maxx); } return 0; }