Model进阶
orm 性能相关
第一步:创建表
class Student(models.Model): name = models.CharField(max_length=32) classes = models.ForeignKey('Class',) class Class(models.Model): name = models.CharField(max_length=16)
views.py文件中
from django.shortcuts import render from app01 import models # Create your views here. def index(request): all_students = models.Student.objects.all().values('classes__id','classes__name') # all_students = models.Student.objects.all() for i in all_students: # print(i.name,i.classes_id) # 1.通过django-debug-toolbar可以看到 # 查询本表子段的时候用到了一次sql查询 # print(i.name,i.classes.id,i.classes.name) # 2.但是如果进行关联表数据的查询 print(i['classes__id'],i['classes__name']) # 4.首先通过values进行了连表操作,效率就高一些了 return render(request,'index.html',{'all_students':all_students})
select_related
但是如果查询结果,就想是对象,就想通过对象.属性的操作,怎么办呢?用到了select_related
from django.shortcuts import render from app01 import models # Create your views here. def index(request): all_students = models.Student.objects.all().select_related('classes') # 使用了select_related之后,里面的参数写的是关系字段的名称,那么就会先进行 # 连表操作,所以sql也是执行了一次,效率高一些,但是他用在外键或者一对一的关系上 for i in all_students: # print(i.name,i.classes_id) print(i.name,i.classes.id,i.classes.name)
prefetch_related
子查询效果。
from django.shortcuts import render from app01 import models # Create your views here. def index(request): all_students = models.Student.objects.all().prefetch_related('classes') # prefetch_related,里面的参数写的是关系字段的名称,那么会执行两次sql,子查询的效果,但是支持外键或一对一或者一对多的查询了 for i in all_students: # print(i.name,i.classes_id) print(i.name,i.classes.id,i.classes.name) return render(request,'index.html',{'all_students':all_students})
only和defer
当我们进行orm查询的时候,你通过翻译出来的sql语句可以看到,每次查询都是查询了每个字段的数据,所以我们通过only和defer,可以指定查询哪些字段数据
from django.shortcuts import render from app01 import models # Create your views here. def index(request): all_students = models.Student.objects.all().only('name')#只要这个字段数据 all_students = models.Student.objects.all().defer('name')#排除,除了这个字段其他字段数据都要 for i in all_students: print(i.name) return render(request,'index.html',{'all_students':all_students})
总结:
1.能用values的尽量不查询对象,然后对象.属性的操作 2.select_related 主动连表,针对一对一或者外键 3.perfetch_related 子查询 ,针对一对一或者外键或者多对多 4.only只查询指定字段数据 defer排除某些字段
QueryDict对象
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | #!/usr/bin/env python # -*- coding:utf-8 -*- from django.urls import reverse from django.http import QueryDict def memory_url(request, name, * args, * * kwargs): """ 生成带有原搜索条件的URL(替代了模板中的url) """ basic_url = reverse(name, args = args, kwargs = kwargs) # 当前URL中无参数 if not request.GET: url = basic_url else : query_dict = QueryDict(mutable = True ) query_dict[ '_filter' ] = request.GET.urlencode() # mid=2&age=99 url = "%s?%s" % (basic_url, query_dict.urlencode()) return url def memory_reverse(request, name, * args, * * kwargs): """ 反向生成URL http://127.0.0.1:8001/rbac/menu/add/?_filter=mid%3D2 1. 在url中讲原来搜索条件,如filter后的值 2. reverse生成原来的URL,如:/menu/list/ 3. /menu/list/?mid%3D2 """ url = reverse(name, args = args, kwargs = kwargs) origin_params = request.GET.get( '_filter' ) if origin_params: url = "%s?%s" % (url, origin_params,) return url |

""" 类的原型:class QueryDict[source] 在HttpRequest对象中,GET和POST属性都是一个django.http.QueryDict的实例。也就是说你可以按本文下面提供的方法操作request.POST和request.GET。 request.POST或request.GET的QueryDict都是不可变,只读的。如果要修改它,需要使用QueryDict.copy()方法,获取它的一个拷贝,然后在这个拷贝上进行修改操作。 一、方法 QueryDict 实现了Python字典数据类型的所有标准方法,因为它是字典的子类。 不同之处在于下面: 1. QueryDict.init(query_string=None, mutable=False, encoding=None)[source] QueryDict实例化方法。注意:QueryDict的键值是可以重复的! >>> QueryDict('a=1&a=2&c=3') <QueryDict: {'a': ['1', '2'], 'c': ['3']}> 如果需要实例化可以修改的对象,添加参数mutable=True。 2. classmethod QueryDict.fromkeys(iterable, value='', mutable=False, encoding=None)[source] Django1.11中的新功能。 循环可迭代对象中的每个元素作为键值,并赋予同样的值(来至value参数)。 >>> QueryDict.fromkeys(['a', 'a', 'b'], value='val') <QueryDict: {'a': ['val', 'val'], 'b': ['val']}> 3. QueryDict.update(other_dict) 用新的QueryDict或字典更新当前QueryDict。类似dict.update(),但是追加内容,而不是更新并替换它们。 像这样: >>> q = QueryDict('a=1', mutable=True) >>> q.update({'a': '2'}) >>> q.getlist('a') ['1', '2'] >>> q['a'] # returns the last '2' 4. QueryDict.items() 类似dict.items(),如果有重复项目,返回最近的一个,而不是都返回: >>> q = QueryDict('a=1&a=2&a=3') >>> q.items() [('a', '3')] 5. QueryDict.values() 类似dict.values(),但是只返回最近的值。 像这样: >>> q = QueryDict('a=1&a=2&a=3') >>> q.values() ['3'] 6. QueryDict.copy()[source] 使用copy.deepcopy()返回QueryDict对象的副本。 此副本是可变的! 7. QueryDict.getlist(key, default=None) 返回键对应的值列表。 如果该键不存在并且未提供默认值,则返回一个空列表。 8. QueryDict.setlist(key, list_)[source] 为list_设置给定的键。 9. QueryDict.appendlist(key, item)[source] 将键追加到内部与键相关联的列表中。 10. QueryDict.setdefault(key, default=None)[source] 类似dict.setdefault(),为某个键设置默认值。 11. QueryDict.setlistdefault(key, default_list=None)[source] 类似setdefault(),除了它需要的是一个值的列表而不是单个值。 12. QueryDict.lists() 类似items(),只是它将其中的每个键的值作为列表放在一起。 像这样: >>> q = QueryDict('a=1&a=2&a=3') >>> q.lists() [('a', ['1', '2', '3'])] 13. QueryDict.pop(key)[source] 返回给定键的值的列表,并从QueryDict中移除该键。 如果键不存在,将引发KeyError。 像这样: >>> q = QueryDict('a=1&a=2&a=3', mutable=True) >>> q.pop('a') ['1', '2', '3'] 14. QueryDict.popitem()[source] 删除QueryDict任意一个键,并返回二值元组,包含键和键的所有值的列表。在一个空的字典上调用时将引发KeyError。 像这样: >>> q = QueryDict('a=1&a=2&a=3', mutable=True) >>> q.popitem() ('a', ['1', '2', '3']) 15. QueryDict.dict() 将QueryDict转换为Python的字典数据类型,并返回该字典。 如果出现重复的键,则将所有的值打包成一个列表,最为新字典中键的值。 >>> q = QueryDict('a=1&a=3&a=5') >>> q.dict() {'a': '5'} 16. QueryDict.urlencode(safe=None)[source] 已url的编码格式返回数据字符串。 像这样: >>> q = QueryDict('a=2&b=3&b=5') >>> q.urlencode() 'a=2&b=3&b=5' 使用safe参数传递不需要编码的字符。 像这样: >>> q = QueryDict(mutable=True) >>> q['next'] = '/a&b/' >>> q.urlencode(safe='/') 'next=/a%26b/' """
可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
1
|
>>> Entry.objects. all ()[:5] # (LIMIT 5) |
>>> Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
可迭代
articleList=models.Article.objects.all() for article in articleList: print(article.title)
惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。(关于惰性是不是在迭代器的地方听过呀)
1
2
3
4
5
6
7
8
|
queryResult=models.Article.objects. all () # not hits database,通过看到的打印的翻译出来的sql语句记录,你会发现单纯的这句话并没有sql语句打印 print(queryResult) # hits database for article in queryResult: print(article.title) # hits database if判断的时候也会执行,if queryResult:pass
|
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。
缓存机制
每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。叫做queryset缓存空间
在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集(非简单查询的查询结果,简单查询往下看。)的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:
1
2
|
print([a.title for a in models.Article.objects. all ()]) print([a.create_time for a in models.Article.objects. all ()]) |
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:
1
2
3
|
queryResult=models.Article.objects. all () print([a.title for a in queryResult]) print([a.create_time for a in queryResult]) |
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
1
2
3
|
>>> queryset = Entry.objects. all () >>> print queryset[ 5 ] # Queries the database >>> print queryset[ 5 ] # Queries the database again |
然而,如果已经对全部查询集求值过,则将检查缓存:
1
2
3
4
|
>>> queryset = Entry.objects. all () >>> [entry for entry in queryset] # Queries the database >>> print queryset[ 5 ] # Uses cache >>> print queryset[ 5 ] # Uses cache |
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
1
2
3
4
|
>>> [entry for entry in queryset] >>> bool (queryset) >>> entry in queryset >>> list (queryset) |
注意:简单地打印查询集不会填充缓存。
queryResult=models.Article.objects.all() print(queryResult) # hits database print(queryResult) # hits database
exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists(): #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=() print("exists...")
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator() --- objs变成了一个生成器,生成器也是迭代器,但是生成器有个特点,就是取完值就不能再取了 # iterator()可以一次只从数据库获取少量数据,这样可以节省内存 for obj in objs: print(obj.title) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
总结:
queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField 就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。
例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。
对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from django.db import models class Person(models.Model): name = models.CharField(max_length = 128 ) def __str__( self ): # __unicode__ on Python 2 return self .name class Group(models.Model): name = models.CharField(max_length = 128 ) members = models.ManyToManyField(Person, through = 'Membership' ) def __str__( self ): # __unicode__ on Python 2 return self .name class Membership(models.Model): person = models.ForeignKey(Person) group = models.ForeignKey(Group) date_joined = models.DateField() invite_reason = models.CharField(max_length = 64 ) |
既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
>>> ringo = Person.objects.create(name = "Ringo Starr" ) >>> paul = Person.objects.create(name = "Paul McCartney" ) >>> beatles = Group.objects.create(name = "The Beatles" ) >>> m1 = Membership(person = ringo, group = beatles, ... date_joined = date( 1962 , 8 , 16 ), ... invite_reason = "Needed a new drummer." ) >>> m1.save() >>> beatles.members. all () [<Person: Ringo Starr>] >>> ringo.group_set. all () [<Group: The Beatles>] >>> m2 = Membership.objects.create(person = paul, group = beatles, ... date_joined = date( 1960 , 8 , 1 ), ... invite_reason = "Wanted to form a band." ) >>> beatles.members. all () [<Person: Ringo Starr>, <Person: Paul McCartney>] |
与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系:
1
2
3
4
5
6
|
# THIS WILL NOT WORK >>> beatles.members.add(john) # NEITHER WILL THIS >>> beatles.members.create(name = "George Harrison" ) # AND NEITHER WILL THIS >>> beatles.members = [john, paul, ringo, george] |
为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的add、create 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。
remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:
1
2
3
4
5
|
>>> # Beatles have broken up >>> beatles.members.clear() >>> # Note that this deletes the intermediate model instances >>> Membership.objects. all () [] |
表数据

class UserInfo(AbstractUser): """ 用户信息 """ nid = models.BigAutoField(primary_key=True) nickname = models.CharField(verbose_name='昵称', max_length=32) telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码') avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png") create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们', to='UserInfo', through='UserFans', related_name='f', through_fields=('user', 'follower')) def __str__(self): return self.username class UserFans(models.Model): """ 互粉关系表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users') follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model): """ 博客信息 """ nid = models.BigAutoField(primary_key=True) title = models.CharField(verbose_name='个人博客标题', max_length=64) site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True) theme = models.CharField(verbose_name='博客主题', max_length=32) user = models.OneToOneField(to='UserInfo', to_field='nid') def __str__(self): return self.title class Category(models.Model): """ 博主个人文章分类表 """ nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name='分类标题', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model): nid = models.BigAutoField(primary_key=True) title = models.CharField(max_length=50, verbose_name='文章标题') desc = models.CharField(max_length=255, verbose_name='文章描述') read_count = models.IntegerField(default=0) comment_count= models.IntegerField(default=0) up_count = models.IntegerField(default=0) down_count = models.IntegerField(default=0) category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True) create_time = models.DateField(verbose_name='创建时间') blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') tags = models.ManyToManyField( to="Tag", through='Article2Tag', through_fields=('article', 'tag'), ) class ArticleDetail(models.Model): """ 文章详细表 """ nid = models.AutoField(primary_key=True) content = models.TextField(verbose_name='文章内容', ) article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid') class Comment(models.Model): """ 评论表 """ nid = models.BigAutoField(primary_key=True) article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid') content = models.CharField(verbose_name='评论内容', max_length=255) create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论') user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid') up_count = models.IntegerField(default=0) def __str__(self): return self.content class ArticleUpDown(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey('UserInfo', null=True) article = models.ForeignKey("Article", null=True) models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey('UserInfo', null=True) comment = models.ForeignKey("Comment", null=True) class Tag(models.Model): nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name='标签名称', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article2Tag(models.Model): nid = models.AutoField(primary_key=True) article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid') tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
select_related
简单使用
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。
select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。
简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。
下面的例子解释了普通查询和select_related() 查询的区别。
查询id=2的文章的分类名称,下面是一个标准的查询:
1
2
3
4
5
|
# Hits the database. article = models.Article.objects.get(nid = 2 ) # Hits the database again to get the related Blog object. print (article.category.title) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
'' ' SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id" FROM "blog_article" WHERE "blog_article"."nid" = 2; args=(2,) SELECT "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_category" WHERE "blog_category"."nid" = 4; args=(4,) ' '' |
如果我们使用select_related()函数:
1
2
3
4
5
6
7
|
articleList=models.Article.objects.select_related( "category" ). all () for article_obj in articleList: # Doesn't hit the database , because article_obj.category # has been prepopulated in the previous query. print(article_obj.category.title) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , "blog_article" . "desc" , "blog_article" . "read_count" , "blog_article" . "comment_count" , "blog_article" . "up_count" , "blog_article" . "down_count" , "blog_article" . "category_id" , "blog_article" . "create_time" , "blog_article" . "blog_id" , "blog_article" . "article_type_id" , "blog_category" . "nid" , "blog_category" . "title" , "blog_category" . "blog_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ( "blog_article" . "category_id" = "blog_category" . "nid" ); |
多外键查询
这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:
1
2
|
article=models.Article.objects.select_related( "category" ).get(nid=1) print(article.articledetail) |
观察logging结果,发现依然需要查询两次,所以需要改为:
1
2
|
article=models.Article.objects.select_related( "category" , "articledetail" ).get(nid=1) print(article.articledetail) |
或者:
article=models.Article.objects
.select_related("category")
.select_related("articledetail")
.get(nid=1) # django 1.7 支持链式操作 print(article.articledetail)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_category" . "nid" , "blog_category" . "title" , "blog_category" . "blog_id" , "blog_articledetail" . "nid" , "blog_articledetail" . "content" , "blog_articledetail" . "article_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ( "blog_article" . "category_id" = "blog_category" . "nid" ) LEFT OUTER JOIN "blog_articledetail" ON ( "blog_article" . "nid" = "blog_articledetail" . "article_id" ) WHERE "blog_article" . "nid" = 1; args=(1,) |
深层查询
1
2
3
4
|
# 查询id=1的文章的用户姓名 article=models.Article.objects.select_related( "blog" ).get(nid=1) print(article.blog. user .username) |
依然需要查询两次:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_blog" . "nid" , "blog_blog" . "title" , FROM "blog_article" INNER JOIN "blog_blog" ON ( "blog_article" . "blog_id" = "blog_blog" . "nid" ) WHERE "blog_article" . "nid" = 1; SELECT "blog_userinfo" . "password" , "blog_userinfo" . "last_login" , ...... FROM "blog_userinfo" WHERE "blog_userinfo" . "nid" = 1; |
这是因为第一次查询没有query到userInfo表,所以,修改如下:
1
2
|
article=models.Article.objects.select_related( "blog__user" ).get(nid=1) print(article.blog. user .username) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... "blog_blog" . "nid" , "blog_blog" . "title" , ...... "blog_userinfo" . "password" , "blog_userinfo" . "last_login" , ...... FROM "blog_article" INNER JOIN "blog_blog" ON ( "blog_article" . "blog_id" = "blog_blog" . "nid" ) INNER JOIN "blog_userinfo" ON ( "blog_blog" . "user_id" = "blog_userinfo" . "nid" ) WHERE "blog_article" . "nid" = 1; |
总结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
- 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
prefetch_related()
对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。
prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。
1
2
3
4
5
|
# 查询所有文章关联的所有标签 article_obj=models.Article.objects. all () for i in article_obj: print(i.tags. all ()) #4篇文章: hits database 5 |
改为prefetch_related:
1
2
3
4
5
|
# 查询所有文章关联的所有标签 article_obj=models.Article.objects.prefetch_related( "tags" ). all () for i in article_obj: print(i.tags. all ()) #4篇文章: hits database 2 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
SELECT "blog_article" . "nid" , "blog_article" . "title" , ...... FROM "blog_article" ; SELECT ( "blog_article2tag" . "article_id" ) AS "_prefetch_related_val_article_id" , "blog_tag" . "nid" , "blog_tag" . "title" , "blog_tag" . "blog_id" FROM "blog_tag" INNER JOIN "blog_article2tag" ON ( "blog_tag" . "nid" = "blog_article2tag" . "tag_id" ) WHERE "blog_article2tag" . "article_id" IN (1, 2, 3, 4);
|
extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)
有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句
extra可以指定一个或多个 参数,例如 select, where or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做
参数之select
The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。
queryResult=models.Article
.objects.extra(select={'is_recent': "create_time > '2017-09-05'"})
结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.
练习:
# in sqlite: article_obj=models.Article.objects
.filter(nid=1)
.extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
.values("standard_time","nid","title") print(article_obj) # <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
参数之where / tables
您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。
where和tables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。
举例来讲:
queryResult=models.Article
.objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
整体插入
创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:
Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])
...更优于:
Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")
注意该方法有很多注意事项,所以确保它适用于你的情况。
这也可以用在ManyToManyFields中,所以:
my_band.members.add(me, my_friend)
...更优于:
my_band.members.add(me)
my_band.members.add(my_friend)
...其中Bands和Artists具有多对多关联。
可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
1
|
>>> Entry.objects. all ()[:5] # (LIMIT 5) |
>>> Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
可迭代
articleList=models.Article.objects.all() for article in articleList: print(article.title)
惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。
1
2
3
4
5
6
|
queryResult=models.Article.objects. all () # not hits database print(queryResult) # hits database for article in queryResult: print(article.title) # hits database |
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构