Model进阶

orm 性能相关

    第一步:创建表

复制代码
 
class Student(models.Model):
    
    name = models.CharField(max_length=32)
    classes = models.ForeignKey('Class',)

class Class(models.Model):
    name = models.CharField(max_length=16)
 
复制代码

     views.py文件中

复制代码
 
from django.shortcuts import render
from app01 import models
# Create your views here.

def index(request):
    all_students = models.Student.objects.all().values('classes__id','classes__name')
    # all_students = models.Student.objects.all()
    for i in all_students:
        # print(i.name,i.classes_id) # 1.通过django-debug-toolbar可以看到
        # 查询本表子段的时候用到了一次sql查询
        # print(i.name,i.classes.id,i.classes.name) # 2.但是如果进行关联表数据的查询
        print(i['classes__id'],i['classes__name']) # 4.首先通过values进行了连表操作,效率就高一些了
        

    return render(request,'index.html',{'all_students':all_students})
 
复制代码

 

  select_related

    但是如果查询结果,就想是对象,就想通过对象.属性的操作,怎么办呢?用到了select_related

复制代码
 
from django.shortcuts import render
from app01 import models
# Create your views here.

def index(request):
    all_students = models.Student.objects.all().select_related('classes')
    # 使用了select_related之后,里面的参数写的是关系字段的名称,那么就会先进行
    # 连表操作,所以sql也是执行了一次,效率高一些,但是他用在外键或者一对一的关系上
    for i in all_students:
        # print(i.name,i.classes_id)
        print(i.name,i.classes.id,i.classes.name)
 
复制代码

 

   

  prefetch_related 

    子查询效果。

复制代码
 
from django.shortcuts import render
from app01 import models
# Create your views here.

def index(request):
    all_students = models.Student.objects.all().prefetch_related('classes')
    # prefetch_related,里面的参数写的是关系字段的名称,那么会执行两次sql,子查询的效果,但是支持外键或一对一或者一对多的查询了
    for i in all_students:
        # print(i.name,i.classes_id)
        print(i.name,i.classes.id,i.classes.name)


    return render(request,'index.html',{'all_students':all_students})
 
复制代码

 

 

  only和defer

    当我们进行orm查询的时候,你通过翻译出来的sql语句可以看到,每次查询都是查询了每个字段的数据,所以我们通过only和defer,可以指定查询哪些字段数据

复制代码
 
from django.shortcuts import render
from app01 import models
# Create your views here.

def index(request):
    all_students = models.Student.objects.all().only('name')#只要这个字段数据
    all_students = models.Student.objects.all().defer('name')#排除,除了这个字段其他字段数据都要
    for i in all_students:
        print(i.name)


    return render(request,'index.html',{'all_students':all_students})
 
复制代码

 

 

   总结:

1.能用values的尽量不查询对象,然后对象.属性的操作
2.select_related 主动连表,针对一对一或者外键
3.perfetch_related 子查询 ,针对一对一或者外键或者多对多
4.only只查询指定字段数据  defer排除某些字段

 

 QueryDict对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from django.urls import reverse
from django.http import QueryDict
 
def memory_url(request, name, *args, **kwargs):
    """
    生成带有原搜索条件的URL(替代了模板中的url)
    """
    basic_url = reverse(name, args=args, kwargs=kwargs)
    # 当前URL中无参数
    if not request.GET:
        url = basic_url
    else:
        query_dict = QueryDict(mutable=True)
        query_dict['_filter'] = request.GET.urlencode()  # mid=2&age=99
        url = "%s?%s" % (basic_url, query_dict.urlencode())
    return url
 
def memory_reverse(request, name, *args, **kwargs):
    """
    反向生成URL
        http://127.0.0.1:8001/rbac/menu/add/?_filter=mid%3D2
        1. 在url中讲原来搜索条件,如filter后的值
        2. reverse生成原来的URL,如:/menu/list/
        3. /menu/list/?mid%3D2
    """
    url = reverse(name, args=args, kwargs=kwargs)
    origin_params = request.GET.get('_filter')
    if origin_params:
        url = "%s?%s" % (url, origin_params,)
    return url
复制代码
"""
类的原型:class QueryDict[source]
 
在HttpRequest对象中,GET和POST属性都是一个django.http.QueryDict的实例。也就是说你可以按本文下面提供的方法操作request.POST和request.GET。
 
request.POST或request.GET的QueryDict都是不可变,只读的。如果要修改它,需要使用QueryDict.copy()方法,获取它的一个拷贝,然后在这个拷贝上进行修改操作。
 
一、方法
QueryDict 实现了Python字典数据类型的所有标准方法,因为它是字典的子类。
 
不同之处在于下面:
 
1. QueryDict.init(query_string=None, mutable=False, encoding=None)[source]
QueryDict实例化方法。注意:QueryDict的键值是可以重复的!
 
>>> QueryDict('a=1&a=2&c=3')
<QueryDict: {'a': ['1', '2'], 'c': ['3']}>
如果需要实例化可以修改的对象,添加参数mutable=True。
 
2. classmethod QueryDict.fromkeys(iterable, value='', mutable=False, encoding=None)[source]
Django1.11中的新功能。
 
循环可迭代对象中的每个元素作为键值,并赋予同样的值(来至value参数)。
 
>>> QueryDict.fromkeys(['a', 'a', 'b'], value='val')
<QueryDict: {'a': ['val', 'val'], 'b': ['val']}>
3. QueryDict.update(other_dict)
用新的QueryDict或字典更新当前QueryDict。类似dict.update(),但是追加内容,而不是更新并替换它们。 像这样:
 
>>> q = QueryDict('a=1', mutable=True)
>>> q.update({'a': '2'})
>>> q.getlist('a')
['1', '2']
>>> q['a'] # returns the last
'2'
4. QueryDict.items()
类似dict.items(),如果有重复项目,返回最近的一个,而不是都返回:
 
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.items()
[('a', '3')]
5. QueryDict.values()
类似dict.values(),但是只返回最近的值。 像这样:
 
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.values()
['3']
6. QueryDict.copy()[source]
使用copy.deepcopy()返回QueryDict对象的副本。 此副本是可变的!
 
7. QueryDict.getlist(key, default=None)
返回键对应的值列表。 如果该键不存在并且未提供默认值,则返回一个空列表。
 
8. QueryDict.setlist(key, list_)[source]
为list_设置给定的键。
 
9. QueryDict.appendlist(key, item)[source]
将键追加到内部与键相关联的列表中。
 
10. QueryDict.setdefault(key, default=None)[source]
类似dict.setdefault(),为某个键设置默认值。
 
11. QueryDict.setlistdefault(key, default_list=None)[source]
类似setdefault(),除了它需要的是一个值的列表而不是单个值。
 
12. QueryDict.lists()
类似items(),只是它将其中的每个键的值作为列表放在一起。 像这样:
 
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.lists()
[('a', ['1', '2', '3'])]
13. QueryDict.pop(key)[source]
返回给定键的值的列表,并从QueryDict中移除该键。 如果键不存在,将引发KeyError。 像这样:
 
>>> q = QueryDict('a=1&a=2&a=3', mutable=True)
>>> q.pop('a')
['1', '2', '3']
14. QueryDict.popitem()[source]
删除QueryDict任意一个键,并返回二值元组,包含键和键的所有值的列表。在一个空的字典上调用时将引发KeyError。 像这样:
 
>>> q = QueryDict('a=1&a=2&a=3', mutable=True)
>>> q.popitem()
('a', ['1', '2', '3'])
15. QueryDict.dict()
将QueryDict转换为Python的字典数据类型,并返回该字典。
 
如果出现重复的键,则将所有的值打包成一个列表,最为新字典中键的值。
 
>>> q = QueryDict('a=1&a=3&a=5')
>>> q.dict()
{'a': '5'}
16. QueryDict.urlencode(safe=None)[source]
已url的编码格式返回数据字符串。 像这样:
 
>>> q = QueryDict('a=2&b=3&b=5')
>>> q.urlencode()
'a=2&b=3&b=5'
使用safe参数传递不需要编码的字符。 像这样:
 
>>> q = QueryDict(mutable=True)
>>> q['next'] = '/a&b/'
>>> q.urlencode(safe='/')
'next=/a%26b/'
"""
QueryDict对象详情
复制代码

 

一 QuerySet

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

1
>>> Entry.objects.all()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

可迭代

articleList=models.Article.objects.all()

for article in articleList:
    print(article.title)

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。(关于惰性是不是在迭代器的地方听过呀)

1
2
3
4
5
6
7
8
queryResult=models.Article.objects.all() # not hits database,通过看到的打印的翻译出来的sql语句记录,你会发现单纯的这句话并没有sql语句打印
 
print(queryResult) # hits database
 
for article in queryResult:
    print(article.title)    # hits database
 
if判断的时候也会执行,if queryResult:pass

 一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集  

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。叫做queryset缓存空间

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集(非简单查询的查询结果,简单查询往下看。)的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

1
2
print([a.title for in models.Article.objects.all()])
print([a.create_time for in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

1
2
3
queryResult=models.Article.objects.all()
print([a.title for in queryResult])
print([a.create_time for in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

1
2
3
>>> queryset = Entry.objects.all()
>>> print queryset[5# Queries the database
>>> print queryset[5# Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

1
2
3
4
>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5# Uses cache
>>> print queryset[5# Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

1
2
3
4
>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注意简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()
print(queryResult) #  hits database
print(queryResult) #  hits database

 

 

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

 if queryResult.exists():
    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
        print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

复制代码
 
objs = Book.objects.all().iterator()  --- objs变成了一个生成器,生成器也是迭代器,但是生成器有个特点,就是取完值就不能再取了
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
    print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
    print(obj.title)
 
 
复制代码

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

 

 

二 中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from django.db import models
 
class Person(models.Model):
    name = models.CharField(max_length=128)
 
    def __str__(self):              # __unicode__ on Python 2
        return self.name
 
class Group(models.Model):
    name = models.CharField(max_length=128)
    members = models.ManyToManyField(Person, through='Membership')
 
    def __str__(self):              # __unicode__ on Python 2
        return self.name
 
class Membership(models.Model):
    person = models.ForeignKey(Person)
    group = models.ForeignKey(Group)
    date_joined = models.DateField()
    invite_reason = models.CharField(max_length=64)

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
...     date_joined=date(1962816),
...     invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
...     date_joined=date(196081),
...     invite_reason="Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members [...])来创建关系:

1
2
3
4
5
6
# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
# AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

 remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:

1
2
3
4
5
>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()
[]

 

 

三 查询优化

 表数据

复制代码
class UserInfo(AbstractUser):
    """
    用户信息
    """
    nid = models.BigAutoField(primary_key=True)
    nickname = models.CharField(verbose_name='昵称', max_length=32)
    telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
    avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
 
    fans = models.ManyToManyField(verbose_name='粉丝们',
                                  to='UserInfo',
                                  through='UserFans',
                                  related_name='f',
                                  through_fields=('user', 'follower'))
 
    def __str__(self):
        return self.username
 
class UserFans(models.Model):
    """
    互粉关系表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
    follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers')
 
class Blog(models.Model):
 
    """
    博客信息
    """
    nid = models.BigAutoField(primary_key=True)
    title = models.CharField(verbose_name='个人博客标题', max_length=64)
    site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
    theme = models.CharField(verbose_name='博客主题', max_length=32)
    user = models.OneToOneField(to='UserInfo', to_field='nid')
    def __str__(self):
        return self.title
 
class Category(models.Model):
    """
    博主个人文章分类表
    """
    nid = models.AutoField(primary_key=True)
    title = models.CharField(verbose_name='分类标题', max_length=32)
 
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
 
class Article(models.Model):
 
    nid = models.BigAutoField(primary_key=True)
    title = models.CharField(max_length=50, verbose_name='文章标题')
    desc = models.CharField(max_length=255, verbose_name='文章描述')
    read_count = models.IntegerField(default=0)
    comment_count= models.IntegerField(default=0)
    up_count = models.IntegerField(default=0)
    down_count = models.IntegerField(default=0)
    category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
    create_time = models.DateField(verbose_name='创建时间')
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
    tags = models.ManyToManyField(
        to="Tag",
        through='Article2Tag',
        through_fields=('article', 'tag'),
)
 
 
class ArticleDetail(models.Model):
    """
    文章详细表
    """
    nid = models.AutoField(primary_key=True)
    content = models.TextField(verbose_name='文章内容', )
 
    article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid')
 
 
class Comment(models.Model):
    """
    评论表
    """
    nid = models.BigAutoField(primary_key=True)
    article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
    content = models.CharField(verbose_name='评论内容', max_length=255)
    create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
 
    parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
    user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid')
 
    up_count = models.IntegerField(default=0)
 
    def __str__(self):
        return self.content
 
class ArticleUpDown(models.Model):
    """
    点赞表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey('UserInfo', null=True)
    article = models.ForeignKey("Article", null=True)
    models.BooleanField(verbose_name='是否赞')
 
class CommentUp(models.Model):
    """
    点赞表
    """
    nid = models.AutoField(primary_key=True)
    user = models.ForeignKey('UserInfo', null=True)
    comment = models.ForeignKey("Comment", null=True)
 
 
class Tag(models.Model):
    nid = models.AutoField(primary_key=True)
    title = models.CharField(verbose_name='标签名称', max_length=32)
    blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
 
 
 
class Article2Tag(models.Model):
    nid = models.AutoField(primary_key=True)
    article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
    tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
View Code
复制代码

 

 

select_related

简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

1
2
3
4
5
# Hits the database.
article=models.Article.objects.get(nid=2)
 
# Hits the database again to get the related Blog object.
print(article.category.title)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
'''
 
SELECT
    "blog_article"."nid",
    "blog_article"."title",
    "blog_article"."desc",
    "blog_article"."read_count",
    "blog_article"."comment_count",
    "blog_article"."up_count",
    "blog_article"."down_count",
    "blog_article"."category_id",
    "blog_article"."create_time",
     "blog_article"."blog_id",
     "blog_article"."article_type_id"
             FROM "blog_article"
             WHERE "blog_article"."nid" = 2; args=(2,)
 
SELECT
     "blog_category"."nid",
     "blog_category"."title",
     "blog_category"."blog_id"
              FROM "blog_category"
              WHERE "blog_category"."nid" = 4; args=(4,)
 
 
'''

 如果我们使用select_related()函数:

1
2
3
4
5
6
7
articleList=models.Article.objects.select_related("category").all()
 
 
    for article_obj in articleList:
        #  Doesn't hit the database, because article_obj.category
        #  has been prepopulated in the previous query.
        print(article_obj.category.title)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SELECT
     "blog_article"."nid",
     "blog_article"."title",
     "blog_article"."desc",
     "blog_article"."read_count",
     "blog_article"."comment_count",
     "blog_article"."up_count",
     "blog_article"."down_count",
     "blog_article"."category_id",
     "blog_article"."create_time",
     "blog_article"."blog_id",
     "blog_article"."article_type_id",
 
     "blog_category"."nid",
     "blog_category"."title",
     "blog_category"."blog_id"
 
FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" "blog_category"."nid");

多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

1
2
article=models.Article.objects.select_related("category").get(nid=1)
print(article.articledetail)

 观察logging结果,发现依然需要查询两次,所以需要改为:

1
2
article=models.Article.objects.select_related("category","articledetail").get(nid=1)
print(article.articledetail)

 或者:

article=models.Article.objects
             .select_related("category")
             .select_related("articledetail")
             .get(nid=1) # django 1.7 支持链式操作 print(article.articledetail)

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
SELECT
 
    "blog_article"."nid",
    "blog_article"."title",
    ......
 
    "blog_category"."nid",
    "blog_category"."title",
    "blog_category"."blog_id",
 
    "blog_articledetail"."nid",
    "blog_articledetail"."content",
    "blog_articledetail"."article_id"
 
   FROM "blog_article"
   LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" "blog_category"."nid")
   LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" "blog_articledetail"."article_id")
   WHERE "blog_article"."nid" = 1; args=(1,)

深层查询

1
2
3
4
# 查询id=1的文章的用户姓名
 
    article=models.Article.objects.select_related("blog").get(nid=1)
    print(article.blog.user.username)

 依然需要查询两次:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
SELECT
    "blog_article"."nid",
    "blog_article"."title",
    ......
 
     "blog_blog"."nid",
     "blog_blog"."title",
 
   FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" "blog_blog"."nid")
   WHERE "blog_article"."nid" = 1;
 
 
 
 
SELECT
    "blog_userinfo"."password",
    "blog_userinfo"."last_login",
    ......
 
FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;

 这是因为第一次查询没有query到userInfo表,所以,修改如下:

1
2
article=models.Article.objects.select_related("blog__user").get(nid=1)
print(article.blog.user.username)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
SELECT
 
"blog_article"."nid""blog_article"."title",
......
 
 "blog_blog"."nid""blog_blog"."title",
......
 
 "blog_userinfo"."password""blog_userinfo"."last_login",
......
 
FROM "blog_article"
 
INNER JOIN "blog_blog" ON ("blog_article"."blog_id" "blog_blog"."nid")
 
INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;

总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

1
2
3
4
5
# 查询所有文章关联的所有标签
    article_obj=models.Article.objects.all()
    for in article_obj:
 
        print(i.tags.all())  #4篇文章: hits database 5

改为prefetch_related:

1
2
3
4
5
# 查询所有文章关联的所有标签
    article_obj=models.Article.objects.prefetch_related("tags").all()
    for in article_obj:
 
        print(i.tags.all())  #4篇文章: hits database 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
SELECT "blog_article"."nid",
               "blog_article"."title",
               ......
 
FROM "blog_article";
 
 
 
SELECT
  ("blog_article2tag"."article_id"AS "_prefetch_related_val_article_id",
  "blog_tag"."nid",
  "blog_tag"."title",
  "blog_tag"."blog_id"
   FROM "blog_tag"
  INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" "blog_article2tag"."tag_id")
  WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);

 

 

 

四 extra

 extra(select=None, where=None, params=None,

      tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 selectwhere or tables这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article
           .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习:

复制代码
 
# in sqlite:
    article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title") print(article_obj) # <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
 
 
复制代码

参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article
           .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])

整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
    Entry(headline="Python 3.0 Released"),
    Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

 

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

1
>>> Entry.objects.all()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

可迭代

articleList=models.Article.objects.all()

for article in articleList:
    print(article.title)

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

1
2
3
4
5
6
queryResult=models.Article.objects.all() # not hits database
 
print(queryResult) # hits database
 
for article in queryResult:
    print(article.title)    # hits database

 一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集

posted @ 2020-10-04 10:10  silencio。  阅读(176)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示