pymysql模块

PyMySQL

  • PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb。
  • Django中也可以使用PyMySQL连接MySQL数据库。
  • PyMySQL安装:pip install pymysql
#pip3 install pymysql
import pymysql
 
user=input('user>>: ').strip()
pwd=input('password>>: ').strip()
 
# 建立链接
conn=pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8'
)
 
# 拿到游标
cursor=conn.cursor() #执行完毕返回的结果集默认以元组显示
#cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)  #
 
# sql注入之:用户不存在,绕过用户与密码 aaa' or 1=1 -- 任意字符
# sql='select * from userinfo where user = "%s" and pwd="%s"' %(user,pwd)
# print(sql)
 
#改写为(execute帮我们做字符串拼接,我们无需且一定不能再为%s加引号了)因为pymysql会自动为我们加上,pymysql模块自动帮我们解决sql注入的问题
sql='select * from userinfo where user = %s and pwd=%s'
rows=cursor.execute(sql,(user,pwd)) #执行sql语句,返回sql查询成功的记录数目
 
# print(cursor.fetchone())
# print(cursor.fetchall())
# print(cursor.fetchmany(2))   #一般不用直接用limit控制数量
 
# cursor.scroll(3,mode='absolute') # 相对绝对位置移动
# print(cursor.fetchone())
# cursor.scroll(2,mode='relative') # 相对当前位置移动
# print(cursor.fetchone())
 
# 增、删、改 需要提交:conn.commit()  #提交后表中记录才会变动
sql99='insert into userinfo(user,pwd) values(%s,%s)'
 
rows99=cursor.execute(sql99,('tom','123'))#单条
print(rows99)
 
rows99=cursor.executemany(sql99,[('jack','123'),('rose','111'),('tony','2222')])#多条
print(rows99)
 
print(cursor.lastrowid)# 获取插入的最后一条数据的自增ID
 
conn.commit()# 增、删、改 需要提交:conn.commit()  #提交后表中记录才会变动
 
cursor.close()
conn.close()
 
# 进行判断
if rows:
    print('登录成功')
else:
    print('登录失败')
 
"""
按年月分组查询
select  date_format(sub_time,'%Y-%m'),count(id) from blog group by date_format(sub_time,'%Y-%m')
"""
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')
# 得到一个可以执行SQL语句并且将结果作为字典返回的游标
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 定义要执行的SQL语句
sql = """
CREATE TABLE USER1 (
id INT auto_increment PRIMARY KEY ,
name CHAR(10) NOT NULL UNIQUE,
age TINYINT NOT NULL
)ENGINE=innodb DEFAULT CHARSET=utf8;
"""
# 执行SQL语句
cursor.execute(sql)
# 关闭光标对象
cursor.close()
# 关闭数据库连接
conn.close()

##注意: charset=“utf8”,编码不要写成"utf-8"

#################### 增 ####################

# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

cursor = conn.cursor()# 得到一个可以执行SQL语句的光标对象
sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);"
username = "Alex"
age = 18
# 执行SQL语句
cursor.execute(sql, [username, age])
# 提交事务
conn.commit()
cursor.close()
conn.close()

#################### 回滚 rollback()取消操作 ####################
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);"
username = "Alex"
age = 18
try:
    # 执行SQL语句
    cursor.execute(sql, [username, age])
    # 提交事务
    conn.commit()
except Exception as e:
    # 有异常,回滚事务
    conn.rollback()
cursor.close()
conn.close()

#################### 获取插入数据的ID(关联操作时会用到) ####################
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);"
username = "Alex"
age = 18
try:
    # 执行SQL语句
    cursor.execute(sql, [username, age])
    # 提交事务
    conn.commit()
    # 提交之后,获取刚插入的数据的ID
    last_id = cursor.lastrowid
except Exception as e:
    # 有异常,回滚事务
    conn.rollback()
cursor.close()
conn.close()

#################### 批量执行 ####################
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);"
data = [("Alex", 18), ("Egon", 20), ("Yuan", 21)]
try:
    # 批量执行多条插入SQL语句
    cursor.executemany(sql, data)
    # 提交事务
    conn.commit()
except Exception as e:
    # 有异常,回滚事务
    conn.rollback()
cursor.close()
conn.close()

#################### 删 ####################

# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
sql = "DELETE FROM USER1 WHERE id=%s;"
try:
    cursor.execute(sql, [4])
    # 提交事务
    conn.commit()
except Exception as e:
    # 有异常,回滚事务
    conn.rollback()
cursor.close()
conn.close()

#################### 改 ####################
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
# 修改数据的SQL语句
sql = "UPDATE USER1 SET age=%s WHERE name=%s;"
username = "Alex"
age = 80
try:
    # 执行SQL语句
    cursor.execute(sql, [age, username])
    # 提交事务
    conn.commit()
except Exception as e:
    # 有异常,回滚事务
    conn.rollback()
cursor.close()
conn.close()

#################### 查询单条数据 ####################
# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
# 查询数据的SQL语句
sql = "SELECT id,name,age from USER1 WHERE id=1;"
# 执行SQL语句
cursor.execute(sql)
# 获取单条查询数据
ret = cursor.fetchone()
cursor.close()
conn.close()
# 打印下查询结果
print(ret)


#################### 查询多条数据 ####################

# 导入pymysql模块
import pymysql
# 连接database
conn = pymysql.connect(
    host='192.168.1.16',
    port=3306,
    user='root',
    password='123',
    db='db1',
    charset='utf8')

# 得到一个可以执行SQL语句的光标对象
cursor = conn.cursor()
# 查询数据的SQL语句
sql = "SELECT id,name,age from USER1;"
# 执行SQL语句
cursor.execute(sql)
# 获取多条查询数据
ret = cursor.fetchall()
cursor.close()
conn.close()
# 打印下查询结果
print(ret)

#################### 进阶用法 ####################

# 可以获取指定数量的数据
cursor.fetchmany(3)
# 光标按绝对位置移动1
cursor.scroll(1, mode="absolute")
# 光标按照相对位置(当前位置)移动1
cursor.scroll(1, mode="relative")
View Code
数据库中加锁
from django.db import transaction
flag = False
with transaction.atomic():  # 事务
    # 在数据库中加锁
    origin_queryset = models.Customer.objects.filter(id__in=pk_list, status=2,
                                                        consultant__isnull=True).select_for_update() 
    if len(origin_queryset) == len(pk_list):
        models.Customer.objects.filter(id__in=pk_list, status=2,
                                        consultant__isnull=True).update(consultant_id=current_user_id)
        flag = True

if not flag:
    return HttpResponse('手速太慢了,选中的客户已被其他人申请,请重新选择')

    # 数据库中:
start transaction;
update user set balance=900 where name='rose'; #买支付100元
update user set balance=1010 where name='tom'; #中介拿走10元
uppdate user set balance=1090 where name='jack'; #卖家拿到90元,出现异常没有拿到
rollback;
commit;

    # 事务操作
with transaction.atomic():
    comment_obj = models.Comment.objects.create(user_id=user_id, article_id=article_id, content=content,
                                                parent_comment_id=pid)
    models.Article.objects.filter(pk=article_id).update(comment_count=F("comment_count") + 1)
    #批量操作
book_list=[]
for i in range(100):
    book=Book(title="book_%s"%i,price=i*i)
    book_list.append(book)

Book.objects.bulk_create(book_list,batch_size=50)    
View Code

Python操作MySQL主要使用两种方式:

  • 原生模块 pymsql
  • ORM框架 SQLAchemy

pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。

# 下载安装 pip3 install pymysql

# 1、执行SQL

# !/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql

# 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 创建游标
cursor = conn.cursor()

# 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")

# 执行SQL,并返回受影响行数
# effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))

# 执行SQL,并返回受影响行数
# effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])


# 提交,不然无法保存新建或者修改的数据
conn.commit()

# 关闭游标
cursor.close()
# 关闭连接
conn.close()


#2、获取新创建数据自增ID
# !/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql

conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11", 1), ("1.1.1.11", 2)])
conn.commit()
cursor.close()
conn.close()

# 获取最新自增ID
new_id = cursor.lastrowid


#3、获取查询数据
# !/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql

conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")

# 获取第一行数据
row_1 = cursor.fetchone()

# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()

conn.commit()
cursor.close()
conn.close()

#
# 注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
#
# cursor.scroll(1,mode='relative')  # 相对当前位置移动
# cursor.scroll(2,mode='absolute') # 相对绝对位置移动


#
# 4、fetch数据类型
#
#   关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:




# !/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql

conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')

# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")

result = cursor.fetchone()

conn.commit()
cursor.close()
conn.close()
使用操作

SQLAchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

安装:pip3 install SQLAlchemy

 

SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
   
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
View Code

一、内部处理

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# )
  
# 新插入行自增ID
# cur.lastrowid
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# )
  
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host='1.1.1.99', color_id=3
# )
  
# 执行SQL
# cur = engine.execute('select * from hosts')
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()
View Code

二、ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

1、创建表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 创建单表
class Users(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))
 
    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),
        Index('ix_id_name', 'name', 'extra'),
    )
 
 
# 一对多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)
 
 
class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
 
 
# 多对多
class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 
class Server(Base):
    __tablename__ = 'server'
 
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)
View Code

注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

2、操作表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 创建单表
class Users(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),
        Index('ix_id_name', 'name', 'extra'),
    )

    def __repr__(self):
        return "%s-%s" %(self.id, self.name)

# 一对多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)

    def __repr__(self):
        return "%s-%s" %(self.nid, self.caption)

class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
    # 与生成表结构无关,仅用于查询方便
    favor = relationship("Favor", backref='pers')

# 多对多
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
    group = relationship("Group", backref='s2g')
    server = relationship("Server", backref='s2g')

class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
    # group = relationship('Group',secondary=ServerToGroup,backref='host_list')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)




def init_db():
    Base.metadata.create_all(engine)


def drop_db():
    Base.metadata.drop_all(engine)


Session = sessionmaker(bind=engine)
session = Session()
表结构 + 数据库连接

  • obj = Users(name="alex0", extra='sb')
    session.add(obj)
    session.add_all([
        Users(name="alex1", extra='sb'),
        Users(name="alex2", extra='sb'),
    ])
    session.commit()
    View Code

  • session.query(Users).filter(Users.id > 2).delete()
    session.commit()
    View Code

  • session.query(Users).filter(Users.id > 2).update({"name" : "099"})
    session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
    session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
    session.commit()
    View Code

  • ret = session.query(Users).all()
    ret = session.query(Users.name, Users.extra).all()
    ret = session.query(Users).filter_by(name='alex').all()
    ret = session.query(Users).filter_by(name='alex').first()
    
    ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all()
    
    ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
    View Code
  • 其他
    View Code

1、索引
  索引是表的目录,在查找内容之前可以先在目录中查找索引位置,以此快速定位查询数据。对于索引,会保存在额外的文件中。

2、索引种类

  • 普通索引:仅加速查询
  • 唯一索引:加速查询 + 列值唯一(可以有null)
  • 主键索引:加速查询 + 列值唯一 + 表中只有一个(不可以有null)
  • 组合索引:多列值组成一个索引,
                  专门用于组合搜索,其效率大于索引合并
  • 全文索引:对文本的内容进行分词,进行搜索 

索引合并,使用多个单列索引组合搜索
覆盖索引,select的数据列只用从索引中就能够取得,不必读取数据行,换句话说查询列要被所建的索引覆盖

3、相关命令

- 查看表结构
    desc 表名
 
- 查看生成表的SQL
    show create table 表名
 
- 查看索引
    show index from  表名
 
- 查看执行时间
    set profiling = 1;
    SQL...
    show profiles;

4、使用索引和不使用索引

由于索引是专门用于加速搜索而生,所以加上索引之后,查询效率会快到飞起来。
 
# 有索引
mysql> select * from tb1 where name = 'wupeiqi-888';
+-----+-------------+---------------------+----------------------------------+---------------------+
| nid | name        | email               | radom                            | ctime               |
+-----+-------------+---------------------+----------------------------------+---------------------+
| 889 | wupeiqi-888 | wupeiqi888@live.com | 5312269e76a16a90b8a8301d5314204b | 2016-08-03 09:33:35 |
+-----+-------------+---------------------+----------------------------------+---------------------+
1 row in set (0.00 sec)
 
# 无索引
mysql> select * from tb1 where email = 'wupeiqi888@live.com';
+-----+-------------+---------------------+----------------------------------+---------------------+
| nid | name        | email               | radom                            | ctime               |
+-----+-------------+---------------------+----------------------------------+---------------------+
| 889 | wupeiqi-888 | wupeiqi888@live.com | 5312269e76a16a90b8a8301d5314204b | 2016-08-03 09:33:35 |
+-----+-------------+---------------------+----------------------------------+---------------------+
1 row in set (1.23 sec)

5、正确使用索引

数据库表中添加索引后确实会让查询速度起飞,但前提必须是正确的使用索引来查询,如果以错误的方式使用,则即使建立索引也会不奏效。
即使建立索引,索引也不会生效:

- like '%xx'
    select * from tb1 where name like '%cn';
- 使用函数
    select * from tb1 where reverse(name) = 'wupeiqi';
- or
    select * from tb1 where nid = 1 or email = 'seven@live.com';
    特别的:当or条件中有未建立索引的列才失效,以下会走索引
            select * from tb1 where nid = 1 or name = 'seven';
            select * from tb1 where nid = 1 or email = 'seven@live.com' and name = 'alex'
- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where name = 999;
- !=
    select * from tb1 where name != 'alex'
    特别的:如果是主键,则还是会走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where name > 'alex'
    特别的:如果是主键或索引是整数类型,则还是会走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
- order by
    select email from tb1 order by name desc;
    当根据索引排序时候,选择的映射如果不是索引,则不走索引
    特别的:如果对主键排序,则还是走索引:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引

6、其他注意事项

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 创建表时尽量时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适合

7、limit分页

无论是否有索引,limit分页是一个值得关注的问题

每页显示10条:
当前 118 120, 125

倒序:
            大      小
            980    970  7 6  6 5  54  43  32

21 19 98     
下一页:

    select 
        * 
    from 
        tb1 
    where 
        nid < (select nid from (select nid from tb1 where nid < 当前页最小值 order by nid desc limit 每页数据 *【页码-当前页】) A order by A.nid asc limit 1)  
    order by 
        nid desc 
    limit 10;



    select 
        * 
    from 
        tb1 
    where 
        nid < (select nid from (select nid from tb1 where nid < 970  order by nid desc limit 40) A order by A.nid asc limit 1)  
    order by 
        nid desc 
    limit 10;


上一页:

    select 
        * 
    from 
        tb1 
    where 
        nid < (select nid from (select nid from tb1 where nid > 当前页最大值 order by nid asc limit 每页数据 *【当前页-页码】) A order by A.nid asc limit 1)  
    order by 
        nid desc 
    limit 10;


    select 
        * 
    from 
        tb1 
    where 
        nid < (select nid from (select nid from tb1 where nid > 980 order by nid asc limit 20) A order by A.nid desc limit 1)  
    order by 
        nid desc 
    limit 10;
View Code

8、执行计划

explain + 查询SQL - 用于显示SQL执行信息参数,根据参考信息可以进行SQL优化

mysql> explain select * from tb2;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
|  1 | SIMPLE      | tb2   | ALL  | NULL          | NULL | NULL    | NULL |    2 | NULL  |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)
    id
        查询顺序标识
            如:mysql> explain select * from (select nid,name from tb1 where nid < 10) as B;
            +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
            | id | select_type | table      | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
            +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
            |  1 | PRIMARY     | <derived2> | ALL   | NULL          | NULL    | NULL    | NULL |    9 | NULL        |
            |  2 | DERIVED     | tb1        | range | PRIMARY       | PRIMARY | 8       | NULL |    9 | Using where |
            +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
        特别的:如果使用union连接气值可能为null


    select_type
        查询类型
            SIMPLE          简单查询
            PRIMARY         最外层查询
            SUBQUERY        映射为子查询
            DERIVED         子查询
            UNION           联合
            UNION RESULT    使用联合的结果
            ...
    table
        正在访问的表名


    type
        查询时的访问方式,性能:all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
            ALL             全表扫描,对于数据表从头到尾找一遍
                            select * from tb1;
                            特别的:如果有limit限制,则找到之后就不在继续向下扫描
                                   select * from tb1 where email = 'seven@live.com'
                                   select * from tb1 where email = 'seven@live.com' limit 1;
                                   虽然上述两个语句都会进行全表扫描,第二句使用了limit,则找到一个后就不再继续扫描。

            INDEX           全索引扫描,对索引从头到尾找一遍
                            select nid from tb1;

            RANGE          对索引列进行范围查找
                            select *  from tb1 where name < 'alex';
                            PS:
                                between and
                                in
                                >   >=  <   <=  操作
                                注意:!=> 符号


            INDEX_MERGE     合并索引,使用多个单列索引搜索
                            select *  from tb1 where name = 'alex' or nid in (11,22,33);

            REF             根据索引查找一个或多个值
                            select *  from tb1 where name = 'seven';

            EQ_REF          连接时使用primary key 或 unique类型
                            select tb2.nid,tb1.name from tb2 left join tb1 on tb2.nid = tb1.nid;



            CONST           常量
                            表最多有一个匹配行,因为仅有一行,在这行的列值可被优化器剩余部分认为是常数,const表很快,因为它们只读取一次。
                            select nid from tb1 where nid = 2 ;

            SYSTEM          系统
                            表仅有一行(=系统表)。这是const联接类型的一个特例。
                            select * from (select nid from tb1 where nid = 1) as A;
    possible_keys
        可能使用的索引

    key
        真实使用的

    key_len
        MySQL中使用索引字节长度

    rows
        mysql估计为了找到所需的行而要读取的行数 ------ 只是预估值

    extra
        该列包含MySQL解决查询的详细信息
        “Using index”
            此值表示mysql将使用覆盖索引,以避免访问表。不要把覆盖索引和index访问类型弄混了。
        “Using where”
            这意味着mysql服务器将在存储引擎检索行后再进行过滤,许多where条件里涉及索引中的列,当(并且如果)它读取索引时,就能被存储引擎检验,因此不是所有带where子句的查询都会显示“Using where”。有时“Using where”的出现就是一个暗示:查询可受益于不同的索引。
        “Using temporary”
            这意味着mysql在对查询结果排序时会使用一个临时表。
        “Using filesort”
            这意味着mysql会对结果使用一个外部索引排序,而不是按索引次序从表里读取行。mysql有两种文件排序算法,这两种排序方式都可以在内存或者磁盘上完成,explain不会告诉你mysql将使用哪一种文件排序,也不会告诉你排序会在内存里还是磁盘上完成。
        “Range checked for each record(index map: N)”
            这个意味着没有好用的索引,新的索引将在联接的每一行上重新估算,N是显示在possible_keys列中索引的位图,并且是冗余的。
详细

更多参见:
  http://www.cnblogs.com/xiaoboluo768/p/5400990.html
  http://dev.mysql.com/doc/refman/5.7/en/explain-output.html#jointype_system

9、慢日志查询

a、配置MySQL自动记录慢日志

slow_query_log = OFF                            是否开启慢日志记录
long_query_time = 2                              时间限制,超过此时间,则记录
slow_query_log_file = /usr/slow.log        日志文件
log_queries_not_using_indexes = OFF     为使用索引的搜索是否记录

注:查看当前配置信息:
       show variables like '%query%'
     修改当前配置:
    set global 变量名 = 值

b、查看MySQL慢日志

mysqldumpslow -s at -a  /usr/local/var/mysql/MacBook-Pro-3-slow.log

"""
--verbose    版本
--debug      调试
--help       帮助
 
-v           版本
-d           调试模式
-s ORDER     排序方式
             what to sort by (al, at, ar, c, l, r, t), 'at' is default
              al: average lock time
              ar: average rows sent
              at: average query time
               c: count
               l: lock time
               r: rows sent
               t: query time
-r           反转顺序,默认文件倒序拍。reverse the sort order (largest last instead of first)
-t NUM       显示前N条just show the top n queries
-a           不要将SQL中数字转换成N,字符串转换成S。don't abstract all numbers to N and strings to 'S'
-n NUM       abstract numbers with at least n digits within names
-g PATTERN   正则匹配;grep: only consider stmts that include this string
-h HOSTNAME  mysql机器名或者IP;hostname of db server for *-slow.log filename (can be wildcard),
             default is '*', i.e. match all
-i NAME      name of server instance (if using mysql.server startup script)
-l           总时间中不减去锁定时间;don't subtract lock time from total time
"""
View Code

 

  

 

posted @ 2019-01-06 22:59  silencio。  阅读(295)  评论(0编辑  收藏  举报