pymysql模块
PyMySQL
- PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb。
- Django中也可以使用PyMySQL连接MySQL数据库。
- PyMySQL安装:pip install pymysql
#pip3 install pymysql import pymysql user=input('user>>: ').strip() pwd=input('password>>: ').strip() # 建立链接 conn=pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8' ) # 拿到游标 cursor=conn.cursor() #执行完毕返回的结果集默认以元组显示 #cursor=conn.cursor(cursor=pymysql.cursors.DictCursor) # # sql注入之:用户不存在,绕过用户与密码 aaa' or 1=1 -- 任意字符 # sql='select * from userinfo where user = "%s" and pwd="%s"' %(user,pwd) # print(sql) #改写为(execute帮我们做字符串拼接,我们无需且一定不能再为%s加引号了)因为pymysql会自动为我们加上,pymysql模块自动帮我们解决sql注入的问题 sql='select * from userinfo where user = %s and pwd=%s' rows=cursor.execute(sql,(user,pwd)) #执行sql语句,返回sql查询成功的记录数目 # print(cursor.fetchone()) # print(cursor.fetchall()) # print(cursor.fetchmany(2)) #一般不用直接用limit控制数量 # cursor.scroll(3,mode='absolute') # 相对绝对位置移动 # print(cursor.fetchone()) # cursor.scroll(2,mode='relative') # 相对当前位置移动 # print(cursor.fetchone()) # 增、删、改 需要提交:conn.commit() #提交后表中记录才会变动 sql99='insert into userinfo(user,pwd) values(%s,%s)' rows99=cursor.execute(sql99,('tom','123'))#单条 print(rows99) rows99=cursor.executemany(sql99,[('jack','123'),('rose','111'),('tony','2222')])#多条 print(rows99) print(cursor.lastrowid)# 获取插入的最后一条数据的自增ID conn.commit()# 增、删、改 需要提交:conn.commit() #提交后表中记录才会变动 cursor.close() conn.close() # 进行判断 if rows: print('登录成功') else: print('登录失败') """ 按年月分组查询 select date_format(sub_time,'%Y-%m'),count(id) from blog group by date_format(sub_time,'%Y-%m') """
# 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句并且将结果作为字典返回的游标 cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) # 定义要执行的SQL语句 sql = """ CREATE TABLE USER1 ( id INT auto_increment PRIMARY KEY , name CHAR(10) NOT NULL UNIQUE, age TINYINT NOT NULL )ENGINE=innodb DEFAULT CHARSET=utf8; """ # 执行SQL语句 cursor.execute(sql) # 关闭光标对象 cursor.close() # 关闭数据库连接 conn.close() ##注意: charset=“utf8”,编码不要写成"utf-8" #################### 增 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') cursor = conn.cursor()# 得到一个可以执行SQL语句的光标对象 sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);" username = "Alex" age = 18 # 执行SQL语句 cursor.execute(sql, [username, age]) # 提交事务 conn.commit() cursor.close() conn.close() #################### 回滚 rollback()取消操作 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);" username = "Alex" age = 18 try: # 执行SQL语句 cursor.execute(sql, [username, age]) # 提交事务 conn.commit() except Exception as e: # 有异常,回滚事务 conn.rollback() cursor.close() conn.close() #################### 获取插入数据的ID(关联操作时会用到) #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);" username = "Alex" age = 18 try: # 执行SQL语句 cursor.execute(sql, [username, age]) # 提交事务 conn.commit() # 提交之后,获取刚插入的数据的ID last_id = cursor.lastrowid except Exception as e: # 有异常,回滚事务 conn.rollback() cursor.close() conn.close() #################### 批量执行 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() sql = "INSERT INTO USER1(name, age) VALUES (%s, %s);" data = [("Alex", 18), ("Egon", 20), ("Yuan", 21)] try: # 批量执行多条插入SQL语句 cursor.executemany(sql, data) # 提交事务 conn.commit() except Exception as e: # 有异常,回滚事务 conn.rollback() cursor.close() conn.close() #################### 删 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() sql = "DELETE FROM USER1 WHERE id=%s;" try: cursor.execute(sql, [4]) # 提交事务 conn.commit() except Exception as e: # 有异常,回滚事务 conn.rollback() cursor.close() conn.close() #################### 改 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() # 修改数据的SQL语句 sql = "UPDATE USER1 SET age=%s WHERE name=%s;" username = "Alex" age = 80 try: # 执行SQL语句 cursor.execute(sql, [age, username]) # 提交事务 conn.commit() except Exception as e: # 有异常,回滚事务 conn.rollback() cursor.close() conn.close() #################### 查询单条数据 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() # 查询数据的SQL语句 sql = "SELECT id,name,age from USER1 WHERE id=1;" # 执行SQL语句 cursor.execute(sql) # 获取单条查询数据 ret = cursor.fetchone() cursor.close() conn.close() # 打印下查询结果 print(ret) #################### 查询多条数据 #################### # 导入pymysql模块 import pymysql # 连接database conn = pymysql.connect( host='192.168.1.16', port=3306, user='root', password='123', db='db1', charset='utf8') # 得到一个可以执行SQL语句的光标对象 cursor = conn.cursor() # 查询数据的SQL语句 sql = "SELECT id,name,age from USER1;" # 执行SQL语句 cursor.execute(sql) # 获取多条查询数据 ret = cursor.fetchall() cursor.close() conn.close() # 打印下查询结果 print(ret) #################### 进阶用法 #################### # 可以获取指定数量的数据 cursor.fetchmany(3) # 光标按绝对位置移动1 cursor.scroll(1, mode="absolute") # 光标按照相对位置(当前位置)移动1 cursor.scroll(1, mode="relative")
数据库中加锁 from django.db import transaction flag = False with transaction.atomic(): # 事务 # 在数据库中加锁 origin_queryset = models.Customer.objects.filter(id__in=pk_list, status=2, consultant__isnull=True).select_for_update() if len(origin_queryset) == len(pk_list): models.Customer.objects.filter(id__in=pk_list, status=2, consultant__isnull=True).update(consultant_id=current_user_id) flag = True if not flag: return HttpResponse('手速太慢了,选中的客户已被其他人申请,请重新选择') # 数据库中: start transaction; update user set balance=900 where name='rose'; #买支付100元 update user set balance=1010 where name='tom'; #中介拿走10元 uppdate user set balance=1090 where name='jack'; #卖家拿到90元,出现异常没有拿到 rollback; commit; # 事务操作 with transaction.atomic(): comment_obj = models.Comment.objects.create(user_id=user_id, article_id=article_id, content=content, parent_comment_id=pid) models.Article.objects.filter(pk=article_id).update(comment_count=F("comment_count") + 1) #批量操作 book_list=[] for i in range(100): book=Book(title="book_%s"%i,price=i*i) book_list.append(book) Book.objects.bulk_create(book_list,batch_size=50)
Python操作MySQL主要使用两种方式:
- 原生模块 pymsql
- ORM框架 SQLAchemy
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。
# 下载安装 pip3 install pymysql # 1、执行SQL # !/usr/bin/env python # -*- coding:utf-8 -*- import pymysql # 创建连接 conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 创建游标 cursor = conn.cursor() # 执行SQL,并返回收影响行数 effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数 # effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数 # effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据 conn.commit() # 关闭游标 cursor.close() # 关闭连接 conn.close() #2、获取新创建数据自增ID # !/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11", 1), ("1.1.1.11", 2)]) conn.commit() cursor.close() conn.close() # 获取最新自增ID new_id = cursor.lastrowid #3、获取查询数据 # !/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据 row_1 = cursor.fetchone() # 获取前n行数据 # row_2 = cursor.fetchmany(3) # 获取所有数据 # row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close() # # 注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如: # # cursor.scroll(1,mode='relative') # 相对当前位置移动 # cursor.scroll(2,mode='absolute') # 相对绝对位置移动 # # 4、fetch数据类型 # # 关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即: # !/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型 cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
SQLAchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
安装:pip3 install SQLAlchemy
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)" # ) # 新插入行自增ID # cur.lastrowid # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),] # ) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)", # host='1.1.1.99', color_id=3 # ) # 执行SQL # cur = engine.execute('select * from hosts') # 获取第一行数据 # cur.fetchone() # 获取第n行数据 # cur.fetchmany(3) # 获取所有数据 # cur.fetchall()
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多 class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine)
注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2、操作表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) def __repr__(self): return "%s-%s" %(self.id, self.name) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) def __repr__(self): return "%s-%s" %(self.nid, self.caption) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 与生成表结构无关,仅用于查询方便 favor = relationship("Favor", backref='pers') # 多对多 class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) group = relationship("Group", backref='s2g') server = relationship("Server", backref='s2g') class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) # group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
- 增
obj = Users(name="alex0", extra='sb') session.add(obj) session.add_all([ Users(name="alex1", extra='sb'), Users(name="alex2", extra='sb'), ]) session.commit()
- 删
session.query(Users).filter(Users.id > 2).delete() session.commit()
- 改
session.query(Users).filter(Users.id > 2).update({"name" : "099"}) session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") session.commit()
- 查
ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
- 其他
View Code
1、索引
索引是表的目录,在查找内容之前可以先在目录中查找索引位置,以此快速定位查询数据。对于索引,会保存在额外的文件中。
2、索引种类
- 普通索引:仅加速查询
- 唯一索引:加速查询 + 列值唯一(可以有null)
- 主键索引:加速查询 + 列值唯一 + 表中只有一个(不可以有null)
- 组合索引:多列值组成一个索引,
专门用于组合搜索,其效率大于索引合并 - 全文索引:对文本的内容进行分词,进行搜索
索引合并,使用多个单列索引组合搜索
覆盖索引,select的数据列只用从索引中就能够取得,不必读取数据行,换句话说查询列要被所建的索引覆盖
3、相关命令
- 查看表结构 desc 表名 - 查看生成表的SQL show create table 表名 - 查看索引 show index from 表名 - 查看执行时间 set profiling = 1; SQL... show profiles;
4、使用索引和不使用索引
由于索引是专门用于加速搜索而生,所以加上索引之后,查询效率会快到飞起来。 # 有索引 mysql> select * from tb1 where name = 'wupeiqi-888'; +-----+-------------+---------------------+----------------------------------+---------------------+ | nid | name | email | radom | ctime | +-----+-------------+---------------------+----------------------------------+---------------------+ | 889 | wupeiqi-888 | wupeiqi888@live.com | 5312269e76a16a90b8a8301d5314204b | 2016-08-03 09:33:35 | +-----+-------------+---------------------+----------------------------------+---------------------+ 1 row in set (0.00 sec) # 无索引 mysql> select * from tb1 where email = 'wupeiqi888@live.com'; +-----+-------------+---------------------+----------------------------------+---------------------+ | nid | name | email | radom | ctime | +-----+-------------+---------------------+----------------------------------+---------------------+ | 889 | wupeiqi-888 | wupeiqi888@live.com | 5312269e76a16a90b8a8301d5314204b | 2016-08-03 09:33:35 | +-----+-------------+---------------------+----------------------------------+---------------------+ 1 row in set (1.23 sec)
5、正确使用索引
数据库表中添加索引后确实会让查询速度起飞,但前提必须是正确的使用索引来查询,如果以错误的方式使用,则即使建立索引也会不奏效。
即使建立索引,索引也不会生效:
- like '%xx' select * from tb1 where name like '%cn'; - 使用函数 select * from tb1 where reverse(name) = 'wupeiqi'; - or select * from tb1 where nid = 1 or email = 'seven@live.com'; 特别的:当or条件中有未建立索引的列才失效,以下会走索引 select * from tb1 where nid = 1 or name = 'seven'; select * from tb1 where nid = 1 or email = 'seven@live.com' and name = 'alex' - 类型不一致 如果列是字符串类型,传入条件是必须用引号引起来,不然... select * from tb1 where name = 999; - != select * from tb1 where name != 'alex' 特别的:如果是主键,则还是会走索引 select * from tb1 where nid != 123 - > select * from tb1 where name > 'alex' 特别的:如果是主键或索引是整数类型,则还是会走索引 select * from tb1 where nid > 123 select * from tb1 where num > 123 - order by select email from tb1 order by name desc; 当根据索引排序时候,选择的映射如果不是索引,则不走索引 特别的:如果对主键排序,则还是走索引: select * from tb1 order by nid desc; - 组合索引最左前缀 如果组合索引为:(name,email) name and email -- 使用索引 name -- 使用索引 email -- 不使用索引
6、其他注意事项
- 避免使用select * - count(1)或count(列) 代替 count(*) - 创建表时尽量时 char 代替 varchar - 表的字段顺序固定长度的字段优先 - 组合索引代替多个单列索引(经常使用多个条件查询时) - 尽量使用短索引 - 使用连接(JOIN)来代替子查询(Sub-Queries) - 连表时注意条件类型需一致 - 索引散列值(重复少)不适合建索引,例:性别不适合
7、limit分页
无论是否有索引,limit分页是一个值得关注的问题
每页显示10条: 当前 118 120, 125 倒序: 大 小 980 970 7 6 6 5 54 43 32 21 19 98 下一页: select * from tb1 where nid < (select nid from (select nid from tb1 where nid < 当前页最小值 order by nid desc limit 每页数据 *【页码-当前页】) A order by A.nid asc limit 1) order by nid desc limit 10; select * from tb1 where nid < (select nid from (select nid from tb1 where nid < 970 order by nid desc limit 40) A order by A.nid asc limit 1) order by nid desc limit 10; 上一页: select * from tb1 where nid < (select nid from (select nid from tb1 where nid > 当前页最大值 order by nid asc limit 每页数据 *【当前页-页码】) A order by A.nid asc limit 1) order by nid desc limit 10; select * from tb1 where nid < (select nid from (select nid from tb1 where nid > 980 order by nid asc limit 20) A order by A.nid desc limit 1) order by nid desc limit 10;
8、执行计划
explain + 查询SQL - 用于显示SQL执行信息参数,根据参考信息可以进行SQL优化
mysql> explain select * from tb2; +----+-------------+-------+------+---------------+------+---------+------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+------+-------+ | 1 | SIMPLE | tb2 | ALL | NULL | NULL | NULL | NULL | 2 | NULL | +----+-------------+-------+------+---------------+------+---------+------+------+-------+ 1 row in set (0.00 sec)
id 查询顺序标识 如:mysql> explain select * from (select nid,name from tb1 where nid < 10) as B; +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 9 | NULL | | 2 | DERIVED | tb1 | range | PRIMARY | PRIMARY | 8 | NULL | 9 | Using where | +----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+ 特别的:如果使用union连接气值可能为null select_type 查询类型 SIMPLE 简单查询 PRIMARY 最外层查询 SUBQUERY 映射为子查询 DERIVED 子查询 UNION 联合 UNION RESULT 使用联合的结果 ... table 正在访问的表名 type 查询时的访问方式,性能:all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const ALL 全表扫描,对于数据表从头到尾找一遍 select * from tb1; 特别的:如果有limit限制,则找到之后就不在继续向下扫描 select * from tb1 where email = 'seven@live.com' select * from tb1 where email = 'seven@live.com' limit 1; 虽然上述两个语句都会进行全表扫描,第二句使用了limit,则找到一个后就不再继续扫描。 INDEX 全索引扫描,对索引从头到尾找一遍 select nid from tb1; RANGE 对索引列进行范围查找 select * from tb1 where name < 'alex'; PS: between and in > >= < <= 操作 注意:!= 和 > 符号 INDEX_MERGE 合并索引,使用多个单列索引搜索 select * from tb1 where name = 'alex' or nid in (11,22,33); REF 根据索引查找一个或多个值 select * from tb1 where name = 'seven'; EQ_REF 连接时使用primary key 或 unique类型 select tb2.nid,tb1.name from tb2 left join tb1 on tb2.nid = tb1.nid; CONST 常量 表最多有一个匹配行,因为仅有一行,在这行的列值可被优化器剩余部分认为是常数,const表很快,因为它们只读取一次。 select nid from tb1 where nid = 2 ; SYSTEM 系统 表仅有一行(=系统表)。这是const联接类型的一个特例。 select * from (select nid from tb1 where nid = 1) as A; possible_keys 可能使用的索引 key 真实使用的 key_len MySQL中使用索引字节长度 rows mysql估计为了找到所需的行而要读取的行数 ------ 只是预估值 extra 该列包含MySQL解决查询的详细信息 “Using index” 此值表示mysql将使用覆盖索引,以避免访问表。不要把覆盖索引和index访问类型弄混了。 “Using where” 这意味着mysql服务器将在存储引擎检索行后再进行过滤,许多where条件里涉及索引中的列,当(并且如果)它读取索引时,就能被存储引擎检验,因此不是所有带where子句的查询都会显示“Using where”。有时“Using where”的出现就是一个暗示:查询可受益于不同的索引。 “Using temporary” 这意味着mysql在对查询结果排序时会使用一个临时表。 “Using filesort” 这意味着mysql会对结果使用一个外部索引排序,而不是按索引次序从表里读取行。mysql有两种文件排序算法,这两种排序方式都可以在内存或者磁盘上完成,explain不会告诉你mysql将使用哪一种文件排序,也不会告诉你排序会在内存里还是磁盘上完成。 “Range checked for each record(index map: N)” 这个意味着没有好用的索引,新的索引将在联接的每一行上重新估算,N是显示在possible_keys列中索引的位图,并且是冗余的。
更多参见:
http://www.cnblogs.com/xiaoboluo768/p/5400990.html
http://dev.mysql.com/doc/refman/5.7/en/explain-output.html#jointype_system
9、慢日志查询
a、配置MySQL自动记录慢日志
slow_query_log = OFF 是否开启慢日志记录
long_query_time = 2 时间限制,超过此时间,则记录
slow_query_log_file = /usr/slow.log 日志文件
log_queries_not_using_indexes = OFF 为使用索引的搜索是否记录
注:查看当前配置信息:
show variables like '%query%'
修改当前配置:
set global 变量名 = 值
b、查看MySQL慢日志
mysqldumpslow -s at -a /usr/local/var/mysql/MacBook-Pro-3-slow.log
""" --verbose 版本 --debug 调试 --help 帮助 -v 版本 -d 调试模式 -s ORDER 排序方式 what to sort by (al, at, ar, c, l, r, t), 'at' is default al: average lock time ar: average rows sent at: average query time c: count l: lock time r: rows sent t: query time -r 反转顺序,默认文件倒序拍。reverse the sort order (largest last instead of first) -t NUM 显示前N条just show the top n queries -a 不要将SQL中数字转换成N,字符串转换成S。don't abstract all numbers to N and strings to 'S' -n NUM abstract numbers with at least n digits within names -g PATTERN 正则匹配;grep: only consider stmts that include this string -h HOSTNAME mysql机器名或者IP;hostname of db server for *-slow.log filename (can be wildcard), default is '*', i.e. match all -i NAME name of server instance (if using mysql.server startup script) -l 总时间中不减去锁定时间;don't subtract lock time from total time """