DeepCTR框架,作者是阿里大佬浅梦
【官方文档:https://deepctr-doc.readthedocs.io/en/latest/】主要是对目前的一些基于深度学习的点击率预测算法进行了实现,如PNN,WDL,DeepFM,MLR,DeepCross,AFM,NFM,DIN,DIEN,xDeepFM,AutoInt等,并且对外提供了一致的调用接口。
基于temsorflow的deepctr目录
一般步骤
- 安装,导包
- 数据预处理
- 生成特征列
- 生成训练样本和模型
主要模块包括:
- feature_column-构造特征列
- inputs-处理输入数据
- models-实现常见ctr算法
- layers-继承tf.keras.layers.Layer
feature_column
包含3个类,对应三种特征类型
- 类别特征-SparseFeat
- 数值特征-DenseFeat
- 序列特征-VarLenSparseFeat
以及4个方法
- get_feature_names
- build_input_features
- get_linear_logit
- input_from_feature_columns
特征类型
SparseFeat(稀疏)
SparseFeat用于处理类别特征,如性别、国籍等类别特征,将类别特征转为固定维度的稠密特征。
SparseFeat(name, vocabulary_size, embedding_dim, use_hash, dtype,embedding_name, group_name) """ name:生成的特征列的名字 vocabulary_size:不同特征值的个数或当use_hash=True时的哈希空间 embedding_dim:嵌入向量的维度 use_hash:是否使用哈希编码,默认False;如果为True,则输入将散列到大小为0到vocabulary_size的空间 dtype:默认int32 embeddings_initializer:嵌入矩阵初始化方式,默认随机初始化 embedding_name:默认None,其名字与name保持一致 group_name:特征列所属的组 traninable:嵌入矩阵是否可训练,默认True """
DenseFeat(密集)
DenseFeat将稠密特征转为向量的形式,并使用transform_fn 函数对其做归一化操作或者其它的线性或非线性变换。
DenseFeat(name, dimension, dtype, transform_fn) """ name:特征列名字 dimension:嵌入特征维度,默认为1 dtype:特征类型,默认为float32 transform_fn:转换函数,归一化函数或线性变换函数,返回张量 """
VarLenSparseFeat
处理类似文本序列的可变长度类型特征。
VarLenSparseFeat(sparsefeat, maxlen, combiner, length_name) """ sparseFeat:属于SparseFeat的实例 maxlen:该特征列的最大特征值 combiner:池化方法,mean、sum、max,默认为mean length_name:特征长度名称,如果为None,用0填充 weight_name:默认None,如果不为空,序列特征会与weight_name的权重进行相乘 weight_norm:是否对权重分数进行归一化,默认True """
相关方法
get_feature_names
''' 作用:获取所有特征列的名字,以列表形式返回 ''' def get_feature_names(feature_columns): features = build_input_features(feature_columns) #为特征列构造keras tensor return list(features.keys()) #返回特征列的names
build_input_features
''' 作用:为所有的特征列构造keras tensor,结果以OrderDict形式返回 ''' def build_input_features(feature_columns, prefix=''): input_features = OrderedDict() for fc in feature_columns: if isinstance(fc, SparseFeat): #判断fc是否属于SparseFeat实例 input_features[fc.name] = Input( shape=(1,), name=prefix + fc.name, dtype=fc.dtype) #Input()函数用于构造keras tensor elif isinstance(fc, DenseFeat): input_features[fc.name] = Input( shape=(fc.dimension,), name=prefix + fc.name, dtype=fc.dtype) elif isinstance(fc, VarLenSparseFeat): input_features[fc.name] = Input(shape=(fc.maxlen,), name=prefix + fc.name, dtype=fc.dtype) if fc.weight_name is not None: input_features[fc.weight_name] = Input(shape=(fc.maxlen, 1), name=prefix + fc.weight_name, dtype="float32") if fc.length_name is not None: input_features[fc.length_name] = Input((1,), name=prefix + fc.length_name, dtype='int32') else: raise TypeError("Invalid feature column type,got", type(fc)) return input_features
get_linear_logit
''' 作用:获取linear_logit(线性变换)的结果 ''' def get_linear_logit(features, feature_columns, units=1, use_bias=False, seed=1024, prefix='linear', l2_reg=0): linear_feature_columns = copy(feature_columns) #将SparseFeat和VarLenSparseFeat的embedding_dim强制置换为1 for i in range(len(linear_feature_columns)): if isinstance(linear_feature_columns[i], SparseFeat): linear_feature_columns[i] = linear_feature_columns[i]._replace(embedding_dim=1, embeddings_initializer=Zeros()) if isinstance(linear_feature_columns[i], VarLenSparseFeat): linear_feature_columns[i] = linear_feature_columns[i]._replace( sparsefeat=linear_feature_columns[i].sparsefeat._replace(embedding_dim=1, embeddings_initializer=Zeros())) #获取用于线性变换的embedding list linear_emb_list = [input_from_feature_columns(features, linear_feature_columns, l2_reg, seed, prefix=prefix + str(i))[0] for i in range(units)] #获取DenseFeat的数值特征 _, dense_input_list = input_from_feature_columns(features, linear_feature_columns, l2_reg, seed, prefix=prefix) linear_logit_list = [] for i in range(units): if len(linear_emb_list[i]) > 0 and len(dense_input_list) > 0: #既有稀疏类别特征也有稠密特征的情况 sparse_input = concat_func(linear_emb_list[i]) #将所有稀疏特征列的嵌入向量进行拼接 dense_input = concat_func(dense_input_list) #将所有稠密特征列的数值特征进行拼接 linear_logit = Linear(l2_reg, mode=2, use_bias=use_bias, seed=seed)([sparse_input, dense_input]) #将sparse_input和dense_input拼接后进行线性变换 elif len(linear_emb_list[i]) > 0: #仅有稀疏类别特征的情况 sparse_input = concat_func(linear_emb_list[i]) linear_logit = Linear(l2_reg, mode=0, use_bias=use_bias, seed=seed)(sparse_input) elif len(dense_input_list) > 0: #仅有稠密数值特征的情况 dense_input = concat_func(dense_input_list) linear_logit = Linear(l2_reg, mode=1, use_bias=use_bias, seed=seed)(dense_input) else: # raise NotImplementedError return add_func([]) linear_logit_list.append(linear_logit) return concat_func(linear_logit_list) #将所有logit结果拼接后返回
input_from_feature_columns
''' 为所有特征列创建嵌入矩阵,并分别返回包含SparseFeat和VarLenSparseFeat的嵌入矩阵的字典,以及包含DenseFeat的数值特征的字典 具体实现是通过调用inputs中的create_embedding_matrix、embedding_lookup、varlen_embedding_lookup等函数完成 ''' def input_from_feature_columns(features, feature_columns, l2_reg, seed, prefix='', seq_mask_zero=True, support_dense=True, support_group=False): sparse_feature_columns = list( filter(lambda x: isinstance(x, SparseFeat), feature_columns)) if feature_columns else [] varlen_sparse_feature_columns = list( filter(lambda x: isinstance(x, VarLenSparseFeat), feature_columns)) if feature_columns else [] embedding_matrix_dict = create_embedding_matrix(feature_columns, l2_reg, seed, prefix=prefix, seq_mask_zero=seq_mask_zero) group_sparse_embedding_dict = embedding_lookup(embedding_matrix_dict, features, sparse_feature_columns) dense_value_list = get_dense_input(features, feature_columns) if not support_dense and len(dense_value_list) > 0: raise ValueError("DenseFeat is not supported in dnn_feature_columns") sequence_embed_dict = varlen_embedding_lookup(embedding_matrix_dict, features, varlen_sparse_feature_columns) group_varlen_sparse_embedding_dict = get_varlen_pooling_list(sequence_embed_dict, features, varlen_sparse_feature_columns) group_embedding_dict = mergeDict(group_sparse_embedding_dict, group_varlen_sparse_embedding_dict) if not support_group: group_embedding_dict = list(chain.from_iterable(group_embedding_dict.values())) return group_embedding_dict, dense_value_list
inputs
SparseFeat和VarLenSparseFeat对象需要创建嵌入矩阵,嵌入矩阵的构造和查表等操作都是通过inputs.py模块实现的,该模块包含9个方法。
get_inputs_list
''' 作用:过滤输入中的空值并返回列表形式的输入 ''' def get_inputs_list(inputs): return list(chain(*list(map(lambda x: x.values(), filter(lambda x: x is not None, inputs)))))
通过filter函数过滤输入中的空值,map函数是取每个元素x的value,chain构建了一个迭代器,循环处理输入中的每条样本,最后返回一个list
create_embedding_dict
''' 作用:为每个稀疏特征创建可训练的嵌入矩阵,使用字典存储所有特征列的嵌入矩阵,并返回该字典 ''' def create_embedding_dict(sparse_feature_columns, varlen_sparse_feature_columns, seed, l2_reg, prefix='sparse_', seq_mask_zero=True): sparse_embedding = {} #处理稀疏特征 for feat in sparse_feature_columns: # 为每个稀疏特征初始化一个vocabulary_size x embedding_dim 大小的嵌入矩阵 emb = Embedding(feat.vocabulary_size, feat.embedding_dim, embeddings_initializer=feat.embeddings_initializer, embeddings_regularizer=l2(l2_reg), name=prefix + '_emb_' + feat.embedding_name) # 令该嵌入矩阵可训练 emb.trainable = feat.trainable #添加到字典中 sparse_embedding[feat.embedding_name] = emb #处理可变长度稀疏特征,处理方法同上 if varlen_sparse_feature_columns and len(varlen_sparse_feature_columns) > 0: for feat in varlen_sparse_feature_columns: # if feat.name not in sparse_embedding: emb = Embedding(feat.vocabulary_size, feat.embedding_dim, embeddings_initializer=feat.embeddings_initializer, embeddings_regularizer=l2( l2_reg), name=prefix + '_seq_emb_' + feat.name, mask_zero=seq_mask_zero) emb.trainable = feat.trainable sparse_embedding[feat.embedding_name] = emb return sparse_embedding
get_embedding_vec_dict
''' 作用:从所有稀疏特征列中查询指定稀疏特征列(参数return_feat_list)的嵌入矩阵,以列表形式返回查询结果 关键参数: embedding_dict:type:dict;存储着所有特征列的嵌入矩阵的字典 input_dict:type:dict;存储着特征列和对应的嵌入矩阵索引的字典,在没有使用hash查询时使用 sparse_feature_columns:type:list;所有稀疏特征列 return_feat_list:需要查询的特征列,默认为空,为空则返回所有稀疏特征列的嵌入矩阵,不为空则仅返回该元组中的特征列的嵌入矩阵 ''' def get_embedding_vec_list(embedding_dict, input_dict, sparse_feature_columns, return_feat_list=(), mask_feat_list=()): embedding_vec_list = [] for fg in sparse_feature_columns: feat_name = fg.name if len(return_feat_list) == 0 or feat_name in return_feat_list: if fg.use_hash: lookup_idx = Hash(fg.vocabulary_size, mask_zero=(feat_name in mask_feat_list))(input_dict[feat_name]) else: lookup_idx = input_dict[feat_name] embedding_vec_list.append(embedding_dict[feat_name](lookup_idx)) return embedding_vec_list
create_embedding_matrix
''' 作用:从所有特征列中筛选出SparseFeat和VarLenSparseFeat,然后调用函数create_embedding_dict为筛选的特征列创建嵌入矩阵 ''' def create_embedding_matrix(feature_columns, l2_reg, seed, prefix="", seq_mask_zero=True): from . import feature_column as fc_lib sparse_feature_columns = list( filter(lambda x: isinstance(x, fc_lib.SparseFeat), feature_columns)) if feature_columns else [] varlen_sparse_feature_columns = list( filter(lambda x: isinstance(x, fc_lib.VarLenSparseFeat), feature_columns)) if feature_columns else [] sparse_emb_dict = create_embedding_dict(sparse_feature_columns, varlen_sparse_feature_columns, seed, l2_reg, prefix=prefix + 'sparse', seq_mask_zero=seq_mask_zero) return sparse_emb_dict
embedding_lookup
''' 作用:从所有稀疏特征列中查询指定稀疏特征列(参数return_feat_list)的嵌入矩阵,以字典形式返回查询结果 参数: sparse_embedding_dict:存储稀疏特征列的嵌入矩阵的字典 sparse_input_dict:存储稀疏特征列的名字和索引的字典 sparse_feature_columns:稀疏特征列列表,元素为SparseFeat return_feat_list:需要查询的稀疏特征列,如果元组为空,默认返回所有特征列的嵌入矩阵 mask_feat_list:用于哈希查询 to_list:是否以列表形式返回查询结果,默认是False ''' def embedding_lookup(sparse_embedding_dict, sparse_input_dict, sparse_feature_columns, return_feat_list=(), mask_feat_list=(), to_list=False): group_embedding_dict = defaultdict(list) #存储结果的列表 for fc in sparse_feature_columns: # 遍历查找 feature_name = fc.name embedding_name = fc.embedding_name if (len(return_feat_list) == 0 or feature_name in return_feat_list): if fc.use_hash: #获取哈希查询的索引 lookup_idx = Hash(fc.vocabulary_size, mask_zero=(feature_name in mask_feat_list))( sparse_input_dict[feature_name]) else: #从sparse_input_dict中获取该特征列的索引 lookup_idx = sparse_input_dict[feature_name] group_embedding_dict[fc.group_name].append(sparse_embedding_dict[embedding_name](lookup_idx)) if to_list: # 如果为真,则将结果转为列表形式返回 return list(chain.from_iterable(group_embedding_dict.values())) return group_embedding_dict
varlen_embedding_kookup
''' 作用:获取varlen_sparse_feature_columns的嵌入矩阵 ''' def varlen_embedding_lookup(embedding_dict, sequence_input_dict, varlen_sparse_feature_columns): varlen_embedding_vec_dict = {} for fc in varlen_sparse_feature_columns: feature_name = fc.name embedding_name = fc.embedding_name if fc.use_hash: lookup_idx = Hash(fc.vocabulary_size, mask_zero=True)(sequence_input_dict[feature_name]) else: lookup_idx = sequence_input_dict[feature_name] varlen_embedding_vec_dict[feature_name] = embedding_dict[embedding_name](lookup_idx) return varlen_embedding_vec_dict
get_varlen_pooling_list
''' 作用:获取varlen_sparse_feature_columns池化后的嵌入向量 ''' def get_varlen_pooling_list(embedding_dict, features, varlen_sparse_feature_columns, to_list=False): pooling_vec_list = defaultdict(list) for fc in varlen_sparse_feature_columns: feature_name = fc.name combiner = fc.combiner feature_length_name = fc.length_name if feature_length_name is not None: # length_name不为空,说明该特征列不存在用0填充的情况 if fc.weight_name is not None: # weight_name不为空,说明序列需要进行权重化操作 seq_input = WeightedSequenceLayer(weight_normalization=fc.weight_norm)( [embedding_dict[feature_name], features[feature_length_name], features[fc.weight_name]]) #需要对查找结果做权重化操作再得到seq_input else: # weight_name为空,说明序列不需要进行权重化操作 seq_input = embedding_dict[feature_name] #直接从嵌入矩阵里找到对应结果,赋值给seq_input vec = SequencePoolingLayer(combiner, supports_masking=False)( [seq_input, features[feature_length_name]]) #池化操作,因为没有填充,所以supports_masking=False,即池化时不需要mask掉填充的部分 else: #length_name为空,说明该特征列存在用0填充的情况,因此在权重化操作和池化操作时都要令supports_masking=True,即mask掉填充的部分 if fc.weight_name is not None: seq_input = WeightedSequenceLayer(weight_normalization=fc.weight_norm, supports_masking=True)( [embedding_dict[feature_name], features[fc.weight_name]]) else: seq_input = embedding_dict[feature_name] vec = SequencePoolingLayer(combiner, supports_masking=True)( seq_input) pooling_vec_list[fc.group_name].append(vec) if to_list: return chain.from_iterable(pooling_vec_list.values()) return pooling_vec_list
get_dense_input
''' 作用:从所有特征列中选出DenseFeat,并以列表形式返回结果 ''' def get_dense_input(features, feature_columns): from . import feature_column as fc_lib #筛选出DenseFeat元素 dense_feature_columns = list( filter(lambda x: isinstance(x, fc_lib.DenseFeat), feature_columns)) if feature_columns else [] dense_input_list = [] #循环对各个DenseFeat元素执行transform_fn函数 for fc in dense_feature_columns: if fc.transform_fn is None: dense_input_list.append(features[fc.name]) else: transform_result = Lambda(fc.transform_fn)(features[fc.name]) dense_input_list.append(transform_result) return dense_input_list
def mergeDict
''' 作用:将a、b两个字典合并 ''' def mergeDict(a, b): c = defaultdict(list) for k, v in a.items(): c[k].extend(v) for k, v in b.items(): c[k].extend(v) return c