Doc2bow是封装于Gensim中的方法,主要是实现bow模型
bow模型(词袋)模型使用一组单词(无序)来表示一个句子
先根据语料构建词典
每个句子可以用词典长度的一维向量来表示,向量不关心单词出现的顺序,只表示该位置的单词在样本中出现的频率。
gensim.corpora.Dictionary---根据语料库构建词典dictionary
dictionary.doc2bow---将每个句子样本表示成向量
similarity = gensim.similarities.Similarity('-Similarity-index', corpus, num_features=400)---构建相似度矩阵
使用:similarity[vector]---获取vector的相似度结果,之后可以进行排序,取前n个
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】