bubbleeee

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::
  23 随笔 :: 0 文章 :: 2 评论 :: 16154 阅读
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

Doc2bow是封装于Gensim中的方法,主要是实现bow模型

bow模型(词袋)模型使用一组单词(无序)来表示一个句子

先根据语料构建词典

每个句子可以用词典长度的一维向量来表示,向量不关心单词出现的顺序,只表示该位置的单词在样本中出现的频率。

gensim.corpora.Dictionary---根据语料库构建词典dictionary

dictionary.doc2bow---将每个句子样本表示成向量

similarity = gensim.similarities.Similarity('-Similarity-index', corpus, num_features=400)---构建相似度矩阵

使用:similarity[vector]---获取vector的相似度结果,之后可以进行排序,取前n个

 

posted on   bubbleeee  阅读(2106)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
点击右上角即可分享
微信分享提示