Loading

Go语言精进之路读书笔记第33条——掌握Go并发模型和常见并发模式

不要通过共享内存来通信,而应该通过通信来共享内存。——Rob Pike

33.1 Go并发模型

CSP(Communicating Sequential Process,通信顺序进程)模型。一个符合CSP模型的并发程序应该是一组通过输入/输出原语连接起来的P的集合。

Go始终推荐以CSP模型风格构建并发程序。Go针对CSP模型提供了三种并发原语:

  • goroutine:对应CSP模型中的P,封装了数据的处理逻辑,是Go运行时调度的基本执行单元
  • channel:对应CSP模型中的输入/输出原语,用于goroutine之间的通信和同步
  • select:用于应对多路输入/输出,可以让goroutine同时协调处理多个channel操作

33.2 Go常见的并发模式

1.创建模式

  • 简单场景:使用go关键字+函数/方法创建goroutine
go fmt.Println("I am a goroutine")
  • 复杂场景:通过CSP模型输入/输出原语的承载体channel在goroutine之间建立联系
  • 创建模式:在内部创建一个goroutine并返回一个channel类型变量的函数
type T struct {...}

func spawn(f func()) chan T {
    c := make(chan T)
    go func() {
        // 使用channel变量c(通过闭包方式)与调用spawn的goroutine通信
        ...
        f()
        ...
    }()

    return c
}

func main() {
    c := spawn(func() {})
    // 使用channel变量c与新创建的goroutine通信
}

2.退出模式

(1) 分离模式

借助了线程模型中的术语,分离(detached)模式。对于分离模式的goroutine,创建它的goroutine不需要关心它的退出,这类goroutine在启动后即与其创建者彻底分离,其生命周期与其执行的主函数相关,函数返回即goroutine退出

用途:

    1. 一次性任务,新创建的goroutine用来执行一个简单的任务,执行后立即退出
    1. 常驻后台执行一些特定任务,如监视(monitor)、观察(watch),通常采用for {...}for { select {...} }代码段形式,并多以定时器(timer)或事件(event)驱动执行
(2) join模式

在线程模型中,父线程可以通过pthread_join来等待子线程结束并获取子线程的结束状态。在Go中,也有类似需求:goroutine的创建者需要等待新goroutine结束。

①等待一个goroutine退出

  • spawn函数使用典型的goroutine创建模式创建了一个goroutine,main goroutine作为创建者通过spawn函数返回的channel与新goroutine建立联系
  • main goroutine在创建完新goroutine后便在该channel上阻塞等待,直到新goroutine退出前向该channel发送了一个信息
func worker(args ...interface{}) {
    if len(args) == 0 {
        return
    }
    interval, ok := args[0].(int)
    if !ok {
        return
    }

    time.Sleep(time.Second * (time.Duration(interval)))
}

func spawn(f func(args ...interface{}), args ...interface{}) chan struct{} {
    c := make(chan struct{})
    go func() {
        f(args...)
        c <- struct{}{}
    }()
    return c
}

func main() {
    done := spawn(worker, 5)
    println("spawn a worker goroutine")
    <-done
    println("worker done")
}

②获取goroutine的退出状态

将channel中承载的类型由struct{}改为了error,这样channel承载的信息就不只是一个信号了,还携带了有价值的信息:新goroutine的结束状态

var OK = errors.New("ok")

func worker(args ...interface{}) error {
    if len(args) == 0 {
        return errors.New("invalid args")
    }
    interval, ok := args[0].(int)
    if !ok {
        return errors.New("invalid interval arg")
    }

    time.Sleep(time.Second * (time.Duration(interval)))
    return OK
}

func spawn(f func(args ...interface{}) error, args ...interface{}) chan error {
    c := make(chan error)
    go func() {
        c <- f(args...)
    }()
    return c
}

func main() {
    done := spawn(worker, 5)
    println("spawn worker1")
    err := <-done
    fmt.Println("worker1 done:", err)
    done = spawn(worker)
    println("spawn worker2")
    err = <-done
    fmt.Println("worker2 done:", err)
}

③等待多个goroutine退出

  • 通过sync.WaitGroup实现等待多个goroutine退出
  • 在所有新创建的goroutine退出后,Wait方法返回,该监视goroutine会向done这个channel写入一个信号,这时main goroutine才会从阻塞在done channel上的状态中恢复,继续往下执行
func worker(args ...interface{}) {
    if len(args) == 0 {
        return
    }

    interval, ok := args[0].(int)
    if !ok {
        return
    }

    time.Sleep(time.Second * (time.Duration(interval)))
}

func spawnGroup(n int, f func(args ...interface{}), args ...interface{}) chan struct{} {
    c := make(chan struct{})
    var wg sync.WaitGroup

    for i := 0; i < n; i++ {
        wg.Add(1)
        go func(i int) {
            name := fmt.Sprintf("worker-%d:", i)
            f(args...)
            println(name, "done")
            wg.Done() // worker done!
        }(i)
    }

    go func() {
        wg.Wait()
        c <- struct{}{}
    }()

    return c
}

func main() {
    done := spawnGroup(5, worker, 3)
    println("spawn a group of workers")
    <-done
    println("group workers done")
}

④支持超时机制的等待

  • 不想无限阻塞等待所有新创建goroutine的退出,而是仅等待一个段合理的时间
  • 通过select原语同时监听timer.C和done这两个channel,哪个先返回数据就执行哪个case分支
func worker(args ...interface{}) {
    if len(args) == 0 {
        return
    }

    interval, ok := args[0].(int)
    if !ok {
        return
    }

    time.Sleep(time.Second * (time.Duration(interval)))
}

func spawnGroup(n int, f func(args ...interface{}), args ...interface{}) chan struct{} {
    c := make(chan struct{})
    var wg sync.WaitGroup

    for i := 0; i < n; i++ {
        wg.Add(1)
        go func(i int) {
            name := fmt.Sprintf("worker-%d:", i)
            f(args...)
            println(name, "done")
            wg.Done() // worker done!
        }(i)
    }

    go func() {
        wg.Wait()
        c <- struct{}{}
    }()

    return c
}

func main() {
    done := spawnGroup(5, worker, 30)
    println("spawn a group of workers")

    timer := time.NewTimer(time.Second * 5)
    defer timer.Stop()
    select {
    case <-timer.C:
        println("wait group workers exit timeout!")
    case <-done:
        println("group workers done")
    }
}
(3) notify-and-wait模式

①通知并等待一个goroutine退出

使用创建模式创建goroutine的spawn函数返回的channel的作用发生了变化,从原先的只是用于新goroutine发送退出信号给创建者,变成了一个双向的数据通道:既承载创建者发送给新goroutine的退出信号,也承载新goroutine返回给创建者的退出状态

func worker(j int) {
    time.Sleep(time.Second * (time.Duration(j)))
}

func spawn(f func(int)) chan string {
    quit := make(chan string)
    go func() {
        var job chan int // 模拟job channel
        for {
            select {
            case j := <-job:
                f(j)
            case <-quit:
                quit <- "ok"
            }
        }
    }()
    return quit
}

func main() {
    quit := spawn(worker)
    println("spawn a worker goroutine")

    time.Sleep(5 * time.Second)

    // notify the child goroutine to exit
    println("notify the worker to exit...")
    quit <- "exit"

    timer := time.NewTimer(time.Second * 10)
    defer timer.Stop()
    select {
    case status := <-quit:
        println("worker done:", status)
    case <-timer.C:
        println("wait worker exit timeout")
    }
}

②通知并等待多个goroutine退出

  • 利用了当使用close函数关闭channel时,所有阻塞到该channel上的goroutine都会得到通知这一特性
  • 通过close(job)来实现广播,各个监听job channel的worker goroutine,通过“comma ok”模式获取的ok值为false,也就表明该channel已关闭,于是worker goroutine执行退出逻辑
func worker(j int) {
    time.Sleep(time.Second * (time.Duration(j)))
}

func spawnGroup(n int, f func(int)) chan struct{} {
    quit := make(chan struct{})
    job := make(chan int)
    var wg sync.WaitGroup

    for i := 0; i < n; i++ {
        wg.Add(1)
        go func(i int) {
            defer wg.Done() // 保证wg.Done在goroutine退出前被执行
            name := fmt.Sprintf("worker-%d:", i)
            for {
                j, ok := <-job
                if !ok {
                    println(name, "done")
                    return
                }
                // do the job
                worker(j)
            }
        }(i)
    }

    go func() {
        <-quit
        close(job) // 广播给所有新goroutine
        wg.Wait()
        quit <- struct{}{}
    }()

    return quit
}

func main() {
    quit := spawnGroup(5, worker)
    println("spawn a group of workers")

    time.Sleep(5 * time.Second)
    // notify the worker goroutine group to exit
    println("notify the worker group to exit...")
    quit <- struct{}{}

    timer := time.NewTimer(time.Second * 5)
    defer timer.Stop()
    select {
    case <-timer.C:
        println("wait group workers exit timeout!")
    case <-quit:
        println("group workers done")
    }
}
(4) 退出模式的应用
  • 一组goroutine的退出总体上有两种情况。一种是并发退出,各个goroutine的退出先后次序对数据处理无影响;另一种是串行退出,各个goroutine按照一定次序逐个进行,次序若错了可能会导致错误
  • 并发退出:
    • 通过sync.WaitGroup在外层等待每个goroutine的退出
    • 通过select监听一个退出通知channel和一个timerchannel,决定到底是正常退出还是超时退出
  • 串行退出:
    • 将每次的left(剩余时间)传入下一个要执行的goroutine的Shutdown方法中
    • select同样使用这个left作为timeout的值,并通过timer.Reset重新设置timer定时器周期
type GracefullyShutdowner interface {
    Shutdown(waitTimeout time.Duration) error
}

type ShutdownerFunc func(time.Duration) error

func (f ShutdownerFunc) Shutdown(waitTimeout time.Duration) error {
    return f(waitTimeout)
}

func ConcurrentShutdown(waitTimeout time.Duration, shutdowners ...GracefullyShutdowner) error {
    c := make(chan struct{})

    go func() {
        var wg sync.WaitGroup
        for _, g := range shutdowners {
            wg.Add(1)
            go func(shutdowner GracefullyShutdowner) {
                defer wg.Done()
                shutdowner.Shutdown(waitTimeout)
            }(g)
        }
        wg.Wait()
        c <- struct{}{}
    }()

    timer := time.NewTimer(waitTimeout)
    defer timer.Stop()

    select {
    case <-c:
        return nil
    case <-timer.C:
        return errors.New("wait timeout")
    }
}

func SequentialShutdown(waitTimeout time.Duration, shutdowners ...GracefullyShutdowner) error {
    start := time.Now()
    var left time.Duration
    timer := time.NewTimer(waitTimeout)

    for _, g := range shutdowners {
        elapsed := time.Since(start)
        left = waitTimeout - elapsed

        c := make(chan struct{})
        go func(shutdowner GracefullyShutdowner) {
            shutdowner.Shutdown(left)
            c <- struct{}{}
        }(g)

        timer.Reset(left)
        select {
        case <-c:
            //continue
        case <-timer.C:
            return errors.New("wait timeout")
        }
    }

    return nil
}

对应的测试代码

func shutdownMaker(processTm int) func(time.Duration) error {
    return func(time.Duration) error {
        time.Sleep(time.Second * time.Duration(processTm))
        return nil
    }
}

func TestConcurrentShutdown(t *testing.T) {
    f1 := shutdownMaker(2)
    f2 := shutdownMaker(6)

    err := ConcurrentShutdown(10*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err != nil {
        t.Errorf("want nil, actual: %s", err)
        return
    }

    err = ConcurrentShutdown(4*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err == nil {
        t.Error("want timeout, actual nil")
        return
    }
}

func TestSequentialShutdown(t *testing.T) {
    f1 := shutdownMaker(2)
    f2 := shutdownMaker(6)

    err := SequentialShutdown(10*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err != nil {
        t.Errorf("want nil, actual: %s", err)
        return
    }

    err = SequentialShutdown(5*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err == nil {
        t.Error("want timeout, actual nil")
        return
    }
}

3.管道模式

  • 管道模式:每个数据处理环节都由一组功能相同的goroutine完成,在每个数据处理环节,goroutine都要从数据输入channel获取前一个环节生产的数据,然后对这些数据进行处理,并将处理后的结果数据通过数据输出channel发往下一个环节
func newNumGenerator(start, count int) <-chan int {
    c := make(chan int)
    go func() {
        for i := start; i < start+count; i++ {
            c <- i
        }
        close(c)
    }()
    return c
}

func filterOdd(in int) (int, bool) {
    if in%2 != 0 {
        return 0, false
    }
    return in, true
}

func square(in int) (int, bool) {
    return in * in, true
}

func spawn(f func(int) (int, bool), in <-chan int) <-chan int {
    out := make(chan int)

    go func() {
        for v := range in {
            r, ok := f(v)
            if ok {
                out <- r
            }
        }
        close(out)
    }()

    return out
}

func main() {
    in := newNumGenerator(1, 20)
    out := spawn(square, spawn(filterOdd, in))

    for v := range out {
        println(v)
    }
}
  • 扩展:扇入/扇出模式

    • 扇入模式:在某个处理环节,处理程序面对不止一个输入channel,我们把所有输入channel的数据汇聚到一个统一的输入channel,然后处理程序再从这个channel中读取数据并处理,直到该channel因所有输入channel关闭而关闭
    • 扇出模式:在某个处理环节,多个功能相同的goroutine从同一个channel读取数据并处理,直到该channel关闭。可以在一组goroutine中均衡分配工作量,从而更均衡地使用CPU
  • 我们通过spawnGroup函数实现了扇出模式,针对每个输入channel,我们都建立多个功能相同的goroutine,让它们从这个共同的输入channel读取数据并处理,直到channel被关闭

  • 在spawnGroup函数的结尾处,我们将多个goroutine的输出channel聚合到一个groupOut channel中,这就是扇入模式的实现

func newNumGenerator(start, count int) <-chan int {
    c := make(chan int)
    go func() {
        for i := start; i < start+count; i++ {
            c <- i
        }
        close(c)
    }()
    return c
}

func filterOdd(in int) (int, bool) {
    if in%2 != 0 {
        return 0, false
    }
    return in, true
}

func square(in int) (int, bool) {
    return in * in, true
}

func spawnGroup(name string, num int, f func(int) (int, bool), in <-chan int) <-chan int {
    groupOut := make(chan int)
    var outSlice []chan int
    for i := 0; i < num; i++ {
        out := make(chan int)
        go func(i int) {
            name := fmt.Sprintf("%s-%d:", name, i)
            fmt.Printf("%s begin to work...\n", name)

            for v := range in {
                r, ok := f(v)
                if ok {
                    out <- r
                }
            }
            close(out)
            fmt.Printf("%s work done\n", name)
        }(i)
        outSlice = append(outSlice, out)
    }

    // Fan-in
    //
    // out --\
    //        \
    // out ---- --> groupOut
    //        /
    // out --/
    //
    go func() {
        var wg sync.WaitGroup
        for _, out := range outSlice {
            wg.Add(1)
            go func(out <-chan int) {
                for v := range out {
                    groupOut <- v
                }
                wg.Done()
            }(out)
        }
        wg.Wait()
        close(groupOut)
    }()

    return groupOut
}

func main() {
    in := newNumGenerator(1, 20)
    out := spawnGroup("square", 2, square, spawnGroup("filterOdd", 3, filterOdd, in))

    time.Sleep(3 * time.Second)

    for v := range out {
        fmt.Println(v)
    }
}

4.超时与取消模式

  • 第一版实现,理性的网络状况
type result struct {
    value string
}

func first(servers ...*httptest.Server) (result, error) {
    c := make(chan result, len(servers))
    queryFunc := func(server *httptest.Server) {
        url := server.URL
        resp, err := http.Get(url)
        if err != nil {
            log.Printf("http get error: %s\n", err)
            return
        }
        defer resp.Body.Close()
        body, _ := ioutil.ReadAll(resp.Body)
        c <- result{
            value: string(body),
        }
    }
    for _, serv := range servers {
        go queryFunc(serv)
    }
    return <-c, nil
}

func fakeWeatherServer(name string) *httptest.Server {
    return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        log.Printf("%s receive a http request\n", name)
        time.Sleep(1 * time.Second)
        w.Write([]byte(name + ":ok"))
    }))
}

func main() {
    result, err := first(fakeWeatherServer("open-weather-1"),
        fakeWeatherServer("open-weather-2"),
        fakeWeatherServer("open-weather-3"))
    if err != nil {
        log.Println("invoke first error:", err)
        return
    }

    log.Println(result)
}

  • 增加超时控制
type result struct {
    value string
}

func first(servers ...*httptest.Server) (result, error) {
    c := make(chan result, len(servers))
    queryFunc := func(server *httptest.Server) {
        url := server.URL
        resp, err := http.Get(url)
        if err != nil {
            log.Printf("http get error: %s\n", err)
            return
        }
        defer resp.Body.Close()
        body, _ := ioutil.ReadAll(resp.Body)
        c <- result{
            value: string(body),
        }
    }
    for _, serv := range servers {
        go queryFunc(serv)
    }

    select {
    case r := <-c:
        return r, nil
    case <-time.After(500 * time.Millisecond):
        return result{}, errors.New("timeout")
    }
}

func fakeWeatherServer(name string) *httptest.Server {
    return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        log.Printf("%s receive a http request\n", name)
        time.Sleep(1 * time.Second)
        w.Write([]byte(name + ":ok"))
    }))
}

func main() {
    result, err := first(fakeWeatherServer("open-weather-1"),
        fakeWeatherServer("open-weather-2"),
        fakeWeatherServer("open-weather-3"))
    if err != nil {
        log.Println("invoke first error:", err)
        return
    }

    log.Println(result)
}
  • 利用context包实现取消模式
    • 利用context.WithCancel创建了一个可以被取消的context.Context变量
    • 通过defer cancel()设定cancel函数在first函数返回前被执行,那些尚未返回的goroutine都将收到cancel事件并退出(http包支持利用context.Context的超时和cancel机制)
type result struct {
    value string
}

func first(servers ...*httptest.Server) (result, error) {
    c := make(chan result)
    ctx, cancel := context.WithCancel(context.Background())
    defer cancel()
    queryFunc := func(i int, server *httptest.Server) {
        url := server.URL
        req, err := http.NewRequest("GET", url, nil)
        if err != nil {
            log.Printf("query goroutine-%d: http NewRequest error: %s\n", i, err)
            return
        }
        req = req.WithContext(ctx)

        log.Printf("query goroutine-%d: send request...\n", i)
        resp, err := http.DefaultClient.Do(req)
        if err != nil {
            log.Printf("query goroutine-%d: get return error: %s\n", i, err)
            return
        }
        log.Printf("query goroutine-%d: get response\n", i)
        defer resp.Body.Close()
        body, _ := ioutil.ReadAll(resp.Body)

        c <- result{
            value: string(body),
        }
        return
    }

    for i, serv := range servers {
        go queryFunc(i, serv)
    }

    select {
    case r := <-c:
        return r, nil
    case <-time.After(500 * time.Millisecond):
        return result{}, errors.New("timeout")
    }
}

func fakeWeatherServer(name string, interval int) *httptest.Server {
    return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        log.Printf("%s receive a http request\n", name)
        time.Sleep(time.Duration(interval) * time.Millisecond)
        w.Write([]byte(name + ":ok"))
    }))
}

func main() {
    result, err := first(fakeWeatherServer("open-weather-1", 200),
        fakeWeatherServer("open-weather-2", 1000),
        fakeWeatherServer("open-weather-3", 600))
    if err != nil {
        log.Println("invoke first error:", err)
        return
    }

    fmt.Println(result)
    time.Sleep(10 * time.Second)
}
posted @ 2024-02-24 14:50  brynchen  阅读(26)  评论(0编辑  收藏  举报