匈牙利算法-二分图的最大匹配
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
——-等等,看得头大?那么请看下面的版本:
通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(惊讶-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉快哭了),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。
本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:
===============================================================================
一: 先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线
===============================================================================
二:接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it
===============================================================================
三:接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?
我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。
(黄色表示这条边被临时拆掉)
与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配(发火发火)重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)
此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去
2号男生可以找3号妹子~ 1号男生可以找2号妹子了~ 3号男生可以找1号妹子
所以第三步最后的结果就是:
===============================================================================
四: 接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生腾出来一个妹子,我们实在是无能为力了……香吉士同学走好。
===============================================================================
这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“腾”字
其原则大概是:有机会上,没机会创造机会也要上
bool find(int x){
int i,j;
for (j=1;j<=m;j++){ //扫描每个妹子
if (line[x][j]==true && used[j]==false)
//如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,但是没有成功,所以就不用瞎费工夫了)
{
used[j]=1;
if (girl[j]==0 || find(girl[j])) {
//名花无主或者能腾出个位置来,这里使用递归
girl[j]=x;
return true;
}
}
}
return false;
}
在主程序我们这样做:每一步相当于我们上面描述的一二三四中的一步
for (i=1;i<=n;i++)
{
memset(used,0,sizeof(used)); //这个在每一步中清空
if find(i) all+=1;
}
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int N = 2005;
bool vis[N];
int link[N],head[N];
int cnt,n;
struct Edge
{
int to;
int next;
};
Edge edge[N*N];
void Init()
{
cnt = 0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
bool dfs(int u)
{
for(int i=head[u];~i;i=edge[i].next)
{
int v = edge[i].to;
if(!vis[v])
{
vis[v] = 1;
if(link[v] == -1 || dfs(link[v]))
{
link[v] = u;
return true;
}
}
}
return false;
}
int match()
{
int ans = 0;
memset(link,-1,sizeof(link));
for(int i=0;i<n;i++)
{
memset(vis,0,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main()
{
while(~scanf("%d",&n))
{
Init();
for(int i=0;i<n;i++)
{
int u,v,k;
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
add(u,v);
add(v,u);
}
}
printf("%d\n",match()>>1);
}
return 0;
}