51nod 1081 子段求和
给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和。
例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1。3 + 7 + 9 = 19,输出19。
Input
第1行:一个数N,N为数组的长度(2 <= N <= 50000)。 第2 至 N + 1行:数组的N个元素。(-10^9 <= N[i] <= 10^9) 第N + 2行:1个数Q,Q为查询的数量。 第N + 3 至 N + Q + 2行:每行2个数,i,l(1 <= i <= N,i + l <= N)
Output
共Q行,对应Q次查询的计算结果。
Input示例
5 1 3 7 9 -1 4 1 2 2 2 3 2 1 5
Output示例
4 10 16 19
树状数组题:模板请参考
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
typedef long long ll;
using namespace std;
const int maxn=50010;
ll N,army[maxn];
ll lowbit(ll k)
{
return k&(-k);
}
void modify(ll x,ll add)
{
while(x<=N)
{
army[x]+=add;
x+=lowbit(x);
}
}
ll get_sum(ll x)
{
ll ret=0;
while(x>0)
{
ret+=army[x];
x-=lowbit(x);
}
return ret;
}
int main()
{
scanf("%lld",&N);
ll d;
for(int i=1;i<=N;i++)
{
scanf("%lld",&d);
modify(i,d);
}
long long q;
scanf("%lld",&q);
ll s,l;
while(q--)
{
scanf("%lld%lld",&s,&l);
printf("%lld\n",get_sum(l+s-1)-get_sum(s-1));
//printf("%d\n",);
}
return 0;
}