51nod 1134最长递增子序列

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)
例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。
Input
第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)
Output
输出最长递增子序列的长度。
Input示例
8
5
1
6
8
2
4
5
10
Output示例
5




具体解法看我的另一篇详细解释:


最长上升子序列的两种解法


不过此题只能用nlog(n)的复杂度的解法!


#include <iostream>
#include<cstdio>
#include<string.h>
using namespace std;
#define Maxn 50010

typedef long long ll;
ll arr[Maxn],ans[Maxn],len;



int main()
{
    ll p,i,j,k;
    //scanf("%d",&T);
    //while(T--)
    //{
        scanf("%lld",&p);
        for(i=1;i<=p;i++)
        {
            scanf("%lld",&arr[i]);

        }
        ans[1]=arr[1];
        len=1;
        for(i=2;i<=p;i++)
        {
            if(arr[i]>ans[len])
                ans[++len]=arr[i];
            else{
                ll pos =lower_bound(ans+1,ans+len,arr[i])-ans;
                ans[pos]=arr[i];
            }

        }
        printf("%lld\n",len);
   // }
    return 0;
}













posted @ 2017-10-20 17:18  Bryce1010  阅读(112)  评论(0编辑  收藏  举报