51nod 1240 莫比乌斯函数

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1

具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。

求莫比乌斯函数有两种求法:

线性筛法求解 单独求解

此处采用单独求解

#include <iostream>

using namespace std;
typedef long long ll;
//计算a是否可以mod b
int MOD(int a,int b)
{
    return a-a/b*b;
}

//计算莫比乌斯函数
//如果一个数包含平方因子,那么miu(n)=0
//如果哟个数不包含平方因子,且有k个不同的质因子,那么miu(n)=(-1)^k

int miu(int n)
{
    int cnt,k=0;
    for(int i=2;i*i<n;i++)
    {
        if(MOD(n,i))
        {
            continue;
        }
        cnt=0;
        k++;
        while(MOD(n,i)==0)
        {
            n/=i;
            cnt++;
        }
        if(cnt>=2)
        {
            return 0;
        }

    }
    if(n!=1)
    {
        k++;
    }
    return MOD(k,2)?-1:1;
}

int main()
{
    //cout << "Hello world!" << endl;
    ll n;
    cin>>n;
    cout<<miu(n)<<endl;
    return 0;
}












posted @ 2017-11-04 20:37  Bryce1010  阅读(96)  评论(0编辑  收藏  举报