1.1.1最短路(Floyd、Dijstra、BellmanFord)

转载自hr_whisper大佬的博客

[

一、Dijkstra

比较详细的迪杰斯特拉算法讲解传送门
Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路。所以Dijkstra常常作为其他算法的预处理。
使用邻接矩阵的时间复杂度为O(n^2),用优先队列的复杂度为O((m+n)logn)近似为O(mlogn)

(一) 过程

每次选择一个未访问过的到已经访问过(标记为Known)的所有点的集合的最短边,并用这个点进行更新,过程如下:

Dv为最短路,而Pv为前面的顶点。
这里写图片描述

  1. 初始
    这里写图片描述

  2. 在v1被标记为已知后的表
    这里写图片描述

  3. 下一步选取v4并且标记为known,顶点v3,v5,v6,v7是邻接的顶点,而他们实际上都需要调整。如表所示:
    这里写图片描述

  4. 接下来选取v2,v4是邻接点,但已经是known的,不需要调整,v5是邻接的点但不做调整,因为经过v2的值为2+10=12而长为3的路径已经是已知的。
    这里写图片描述

  5. 接下来选取v5,值为3,v7 3+6>5不需调整,然后选取v3,对v6的距离下调到3+5=8
    这里写图片描述

  6. 再选下一个顶点是v7,v6变为5+1=6
    这里写图片描述

  7. 最后选取v6
    这里写图片描述

(二) 局限性

Dijkstra没办法解决负边权的最短路径,如图
这里写图片描述

运行完该算法后,从顶点1到顶点3的最短路径为1,3,其长度为1,而实际上最短路径为1,2,3,其长度为0.(因为过程中先选择v3,v3被标记为已知,今后不再更新)

(三) 算法实现。

1.普通的邻接表 以(HDU 1874 畅通工程续 SPFA || dijkstra)为例

用vis作为上面标记的known,dis记录最短距离(记得初始化为一个很大的数)。
(1)Dijkstra+邻接矩阵

#include<cstdio>
#include<cstring>
const int MAXN=200+10;
const int INF=1000000;
int n,m,map[MAXN][MAXN],dis[MAXN];
bool vis[MAXN];

void dijkstra(int s)
{
    memset(vis,0,sizeof(vis));
    int cur=s;
    dis[cur]=0;
    vis[cur]=1;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
            if(!vis[j] && dis[cur] + map[cur][j] < dis[j])
                dis[j]=dis[cur] + map[cur][j] ;

        int mini=INF;
        for(int j=0;j<n;j++)
            if(!vis[j] && dis[j] < mini)
                mini=dis[cur=j];
        vis[cur]=true;
    }

}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++)
        {
            dis[i]=INF;
            for(int j=0;j<n;j++)
                map[i][j]=INF;
        }
        for(int i=0;i<m;i++)
        {
            int from,to,val;
            scanf("%d%d%d",&from,&to,&val);
            if(map[from][to] > val)
                map[to][from]=map[from][to]=val;
        }
        int s,t;
        scanf("%d%d",&s,&t);
        dijkstra(s);
        if(dis[t]==INF)
            printf("-1\n");
        else
            printf("%d\n",dis[t]);
    }
    return 0;

}

(2)Dijkstra+优先队列

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN];

struct edge
{
    int to,val,next;
}e[MAXM];

void add(int from,int to,int  val)
{
    e[len].to=to;
    e[len].val=val;
    e[len].next=head[from];
    head[from]=len++;
}
struct point
{
    int val,id;
    point(int id,int val):id(id),val(val){}
    bool operator <(const point &x)const{
        return val>x.val;
    }
};
void dijkstra(int s)
{
    memset(vis,0,sizeof(vis));
    for(int i=0;i<n;i++)
        dis[i]=INF; 

    priority_queue<point> q;
    q.push(point(s,0));
    dis[s]=0;
    while(!q.empty())
    {
        int cur=q.top().id;
        q.pop();
        if(vis[cur]) continue;
        vis[cur]=true;
        for(int i=head[cur];i!=-1;i=e[i].next)
        {
            int id=e[i].to;
            if(!vis[id] && dis[cur]+e[i].val < dis[id])
            {
                dis[id]=dis[cur]+e[i].val;
                q.push(point(id,dis[id]));
            }
        }       
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        len=0;
        memset(head,-1,sizeof(head));

        for(int i=0;i<m;i++)
        {
            int from,to,val;
            scanf("%d%d%d",&from,&to,&val);
            add(from,to,val);
            add(to,from,val);
        }


        int s,t;
        scanf("%d%d",&s,&t);
        dijkstra(s);
        if(dis[t]==INF)
            printf("-1\n");
        else
            printf("%d\n",dis[t]);
    }
    return 0;

}

二、SPFA(bellman-ford)

(一)原理过程

关于SPFA算法详细介绍传送门

(二)实现

1.邻接矩阵的SPFA以(HDU 1874 畅通工程续 SPFA || dijkstra)为例:

#include<cstdio>
#include<queue>
using namespace std;
const int INF=1000000;
const int MAXN=200+10;
int n,m;
int map[MAXN][MAXN];
int dis[MAXN];
void SPFA(int s)
{
    for(int i=0;i<n;i++)
        dis[i]=INF;

    bool vis[MAXN]={0};

    vis[s]=true;
    dis[s]=0;

    queue<int> q;
    q.push(s);
    while(!q.empty())
    {
        int cur=q.front();
        q.pop();
        vis[cur]=false;
        for(int i=0;i<n;i++)
        {
            if(dis[cur] + map[cur][i] < dis[i])
            {
                dis[i]=dis[cur] + map[cur][i];
                if(!vis[i])
                {
                    q.push(i);
                    vis[i]=true;
                }
            }           
        }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                map[i][j]=INF;

        for(int i=0;i<m;i++)
        {
            int from,to,dis;
            scanf("%d%d%d",&from,&to,&dis);
            if(map[from][to]>dis)
                map[from][to]=map[to][from]=dis;
        }
        int s,t;
        scanf("%d%d",&s,&t);
        SPFA(s);
        if(dis[t]==INF)
            puts("-1");
        else
            printf("%d\n",dis[t]);
    }
    return 0;
}

2.SPFA+邻接表

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN];

struct edge
{
    int to,val,next;
}e[MAXM];

void add(int from,int to,int  val)
{
    e[len].to=to;
    e[len].val=val;
    e[len].next=head[from];
    head[from]=len++;
}
void spfa(int s)
{
    memset(vis,0,sizeof(vis));
    for(int i=0;i<n;i++)
        dis[i]=INF;    

    queue<int> q;
    q.push(s);
    vis[s]=true;
    dis[s]=0;
    while(!q.empty())
    {
        int cur=q.front();
        q.pop();
        vis[cur]=false;
        for(int i=head[cur];i!=-1;i=e[i].next)
        {
            int id=e[i].to;
            if(dis[id] > dis[cur]+e[i].val)
            {
                dis[id] = dis[cur] + e[i].val;
                if(!vis[id])
                {
                    vis[id]=true;
                    q.push(id);
                }
            }
        }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        len=0;
        memset(head,-1,sizeof(head));

        for(int i=0;i<m;i++)
        {
            int from,to,val;
            scanf("%d%d%d",&from,&to,&val);
            add(from,to,val);
            add(to,from,val);
        }


        int s,t;
        scanf("%d%d",&s,&t);
        spfa(s);
        if(dis[t]==INF)
            printf("-1\n");
        else
            printf("%d\n",dis[t]);
    }
    return 0;

}

三、Floyd

全称Floyd-Warshall。记得离散数学里面有Warshall算法,用来计算传递闭包。而数据结构每次都简称floyd,当时就觉得两个都差不多,有神马关系,后来google一下发现是同一个算法。。。。改个名字出来走江湖啊!!!!!
这个算法用于求所有点对的最短距离。比调用n次dijkstra的优点在于代码简单。

(一)原理过程

这是一个dp(动态规划的过程)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
即从顶点i到j且经过顶点k的最短路径长度。

(二)实现

以(HDU 1874 畅通工程续 SPFA || dijkstra)为例

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=200+10;
const int INF=1000000;
int n,m,dis[MAXN][MAXN];

void floyd()
{
    for(int k=0;k<n;k++)
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
              dis[i][j]=INF;

        for(int i=0;i<m;i++)
        {
            int from,to,val;
            scanf("%d%d%d",&from,&to,&val);
            if(dis[from][to] > val)
                dis[to][from]=dis[from][to]=val;        
        }
        int s,t;
        scanf("%d%d",&s,&t);
        if(s==t)
        {
            printf("0\n");
            continue;
        }
        floyd();
        if(dis[s][t]==INF)
            printf("-1\n");
        else
            printf("%d\n",dis[s][t]);
    }
    return 0;

}

如走迷宫经常用的BFS,以一个点出发,向外扩散。

如:

UVA 10047 - TheMonocycle BFS

HDU 1728逃离迷宫 BFS

POJ3984迷宫问题 BFS

UVA 11624 - Fire!图BFS

除了上面的

HDU 1874畅通工程续 SPFA || dijkstra||floyd

还有:

UVA11280 - Flying to Fredericton SPFA变形

UVA11090 - Going in Cycle!! SPFA

UVA10917 Walk Through the Forest SPFA

POJ 3259Wormholes邻接表的SPFA判断负权回路

POJ 1932XYZZY (ZOJ 1935)SPFA+floyd

UVA11374 Airport Express SPFA||dijkstra

UVA11367 - Full Tank? dijkstra+DP

POJ 1511Invitation Cards (ZOJ 2008)使用优先队列的dijkstra

POJ 3268Silver Cow Party (Dijkstra~)

POJ 2387Til the Cows Come Home (Dijkstra)

UVA10603 - Fill BFS~

posted @ 2018-03-04 18:39  Bryce1010  阅读(143)  评论(0编辑  收藏  举报