HDU 5296 Annoying problem
Annoying problem
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 203 Accepted Submission(s): 60
Problem Description
Coco has a tree, whose nodes are conveniently labeled by 1,2,…,n, which has n-1 edge,each edge has a weight. An existing set S is initially empty.
Now there are two kinds of operation:
1 x: If the node x is not in the set S, add node x to the set S
2 x: If the node x is in the set S,delete node x from the set S
Now there is a annoying problem: In order to select a set of edges from tree after each operation which makes any two nodes in set S connected. What is the minimum of the sum of the selected edges’ weight ?
Now there are two kinds of operation:
1 x: If the node x is not in the set S, add node x to the set S
2 x: If the node x is in the set S,delete node x from the set S
Now there is a annoying problem: In order to select a set of edges from tree after each operation which makes any two nodes in set S connected. What is the minimum of the sum of the selected edges’ weight ?
Input
one integer number T is described in the first line represents the group number of testcases.( T<=10 )
For each test:
The first line has 2 integer number n,q(0<n,q<=100000) describe the number of nodes and the number of operations.
The following n-1 lines each line has 3 integer number u,v,w describe that between node u and node v has an edge weight w.(1<=u,v<=n,1<=w<=100)
The following q lines each line has 2 integer number x,y describe one operation.(x=1 or 2,1<=y<=n)
For each test:
The first line has 2 integer number n,q(0<n,q<=100000) describe the number of nodes and the number of operations.
The following n-1 lines each line has 3 integer number u,v,w describe that between node u and node v has an edge weight w.(1<=u,v<=n,1<=w<=100)
The following q lines each line has 2 integer number x,y describe one operation.(x=1 or 2,1<=y<=n)
Output
Each testcase outputs a line of "Case #x:" , x starts from 1.
The next q line represents the answer to each operation.
The next q line represents the answer to each operation.
Sample Input
1 6 5 1 2 2 1 5 2 5 6 2 2 4 2 2 3 2 1 5 1 3 1 4 1 2 2 5
Sample Output
Case #1: 0 6 8 8 4
Author
FZUACM
Source
#include <bits/stdc++.h> using namespace std; #define prt(k) cerr<<#k" = "<<k<<endl typedef unsigned long long ll; const int N = 233333; int n, m, head[N], mm; struct Edge { int to, next, w; } e[N << 1]; void add(int u, int v, int w = 1) { e[mm].to = v; e[mm].next = head[u]; e[mm].w = w; head[u] = mm++; } int sz[N], dep[N]; int f[N][22]; /// f[i][j] 表示 i 的第 2^j 个祖先 int dfn[N]; ///dfs index int cur; int id[N]; /// you dfs xu qiu chu bian hao int len[N]; void dfs(int u, int fa) /// 点从 1 開始标号 { f[u][0] = fa; sz[u] = 1; dfn[u] = ++cur; id[cur] = u; for (int i=head[u]; ~i; i=e[i].next) { int v = e[i].to; int w = e[i].w; if (v != fa) { dep[v] = dep[u] + 1; len[v] = len[u] + w; dfs(v, u); sz[u] += sz[v]; } } } int maxh; void gao() { cur = 0; dep[0] = -1; len[1] = dep[1] = 0; f[1][0] = 1; dfs(1, 0);f[1][0] = 1; int j; for (j=1; (1<<j)<n; j++) for (int i=1; i<=n; i++) f[i][j] = f[f[i][j-1]][j-1]; maxh = j - 1; } int swim(int x, int k) { for (int i=0; i<=maxh; i++) if (k >> i & 1) x = f[x][i]; return x; } int LCA(int x, int y) { if (dep[x] > dep[y]) swap(x, y); ///dep[x] <= dep[y]; y = swim(y, dep[y] - dep[x]); if (x == y) return y; for (int i=maxh; i>=0; i--) { if (f[x][i] != f[y][i]) x = f[x][i], y = f[y][i]; } return f[x][0]; } int Q; set<int> se; set<int>::iterator it; int dist(int x, int y) { int lca = LCA(x, y); return len[x] - len[lca] + len[y] - len[lca]; } int solve(int u) { if (se.empty()) return 0; int x, y; int t = *se.begin(); it = se.lower_bound( u); y = *it; it--; x = *(it ); int t2 = *se.rbegin(); x = id[x]; y = id[y]; if (t2 < u || t > u) { x = id[t]; y = id[t2]; } u = id[u]; return len[u] - len[LCA(x,u) ] - len[LCA(y,u)] + len[LCA(x,y) ]; } int main() { int re; cin>>re; int ca=1; while (re--) { cin>>n>>Q; mm = 0; memset(head,-1,sizeof head); for (int i=0; i<n-1; i++) { int u, v, w; scanf("%d%d%d", &u, &v, &w); add(u, v, w); add(v, u, w); } gao(); printf("Case #%d:\n", ca++); se.clear(); int ans = 0; while (Q--) { int op, u; scanf("%d%d", &op, &u); u = dfn[u]; if (op==1) { it = se.find(u); if (it==se.end()) { ans += solve(u); se.insert(u); } } else { it = se.find(u); if (it != se.end()) { se.erase(u); ans -= solve(u); } } printf("%d\n", ans); } } return 0; }