正投影与斜投影
正投影
设物体上任一点的三维坐标为\(p(x,y,z)\),投影后的三维坐标为\(p^,(x^,,y^,,z^,)\),则正交投影方程为:
\[ \left\{\begin{array}{rcl}
x^,=x \\
y^,=y \\
z^,=0
\end{array} \right. \]
齐次坐标矩阵表示为:
\[\left[\begin{matrix}
x^, \\
y^, \\
z^, \\
1
\end{matrix}\right]=
\left[\begin{matrix}
x \\
y \\
0 \\
1
\end{matrix}\right]=
\left[\begin{matrix}
1 & 0 & 0 & 0 \\
0 &1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{matrix}\right]
\left[\begin{matrix}
x \\
y \\
z \\
1
\end{matrix}\right]
\]
其中,正交投影矩阵为:
\[ S=\left[\begin{matrix}
1 & 0 & 0 & 0 \\
0 &1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{matrix}\right]
\]
斜投影
斜投影变换
- 斜投影是投影方向不垂直投影面的平行投影。
- 记投影方向与投影面\(xoy\)的夹角为\(\alpha\),投影线与\(ox\)正向的夹角为\(\beta\),则斜投影变换为:
\[ \left\{\begin{array}{rcl}
x^,=x-zcot\alpha cos\beta \\
y^, =y-zcot\alpha sin \beta
\end{array}\right.
\]
齐次方程为:
\[ \left[\begin{matrix}
x^, \\
y^, \\
z^, \\
0
\end{matrix}\right]=
\left[\begin{matrix}
1 & 0 & -cot\alpha cos\beta & 0 \\
0 &1 & -cot\alpha sin \beta & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{matrix}\right]
\left[\begin{matrix}
x \\
y \\
z \\
1
\end{matrix}\right]
\]
斜等测投影与斜二测投影
- 斜等测投影:\(\beta=45^\circ\),\(\alpha=45^\circ\)
\[ \left\{\begin{array}{rcl}
x^,=x-0.707z \\
y^, =y-0.707z
\end{array}\right.
\]
- 斜二测投影:\(\beta=45^\circ\),\(\alpha \approx 63.4^\circ\)(\(cot\alpha =0.5\))
\[ \left\{\begin{array}{rcl}
x^,=x-0.3536z \\
y^, =y-0.3536z
\end{array}\right.
\]