python画图汇总(持续更新)
- 折线图
plt.figure(figsize=(40, 40)) # 确定图像画布的大小 plt.subplot(211) # 将画布分为两行一列 plt.xlabel('Number of sample', fontsize=40) # x轴的label plt.ylabel('Characteristics of the amplitude', fontsize=40) # y轴的label 备注(plot所有的原件都可以加fontsize属性) plt.title('{} characteristics (ml_id=2 waveType=2)'.format(c_type), fontsize=50) # 图的title plt.plot(two_type_list[:two_negative_end_index], linestyle = "-", color = 'r', # 绘制折线图,其中若x参数省略,则横坐标以y列表的索引代替 label = 'Negative | average: {} variance: {} median: {}'.format(('%.2f' % np.mean(two_type_list[ : two_negative_end_index])), # label参数表示这条线的label,可以当作图例显示出来 ('%.2f' % np.var(two_type_list[ : two_negative_end_index])), ('%.2f' % np.median(two_type_list[ : two_negative_end_index]))), linewidth=3.0) # 线宽 plt.plot(two_type_list[two_negative_end_index+1:], linestyle = "-", color = 'g', # 备注(一张图可以累积加多个plot) label = 'Positive | average: {} variance: {} median: {}'.format(('%.2f' % np.mean(two_type_list[two_negative_end_index+1 : ])), ('%.2f' % np.var(two_type_list[two_negative_end_index+1 : ])), ('%.2f' % np.median(two_type_list[two_negative_end_index+1 : ]))), linewidth=3.0) # plt.ylim(0, 5) # 设置y轴的取值范围,如设置(0,5)则y轴坐标为从0开始,到5结束 # 刻度值字体大小设置 plt.tick_params(labelsize=40) # 设置坐标轴上刻度的字体大小 plt.legend(loc=0, fontsize = 40) # 显示图例,loc=0表示图例会根据图片情况自动摆放 #################################################################################################################################### plt.subplot(212) plt.xlabel('Number of sample', fontsize=40) plt.ylabel('Characteristics of the amplitude', fontsize=40) plt.title('{} characteristics (ml_id=6 waveType=2)'.format(c_type), fontsize=50) plt.plot(six_type_list[:six_negative_end_index], linestyle = "-", color = 'r', label = 'Negative | average: {} variance: {} median: {}'.format(('%.2f' % np.mean(six_type_list[ : six_negative_end_index])), ('%.2f' % np.var(six_type_list[ : six_negative_end_index])), ('%.2f' % np.median(six_type_list[ : six_negative_end_index]))), linewidth=3.0) plt.plot(six_type_list[six_negative_end_index+1:], linestyle = "-", color = 'g', label = 'Positive | average: {} variance: {} median: {}'.format(('%.2f' % np.mean(six_type_list[six_negative_end_index+1 : ])), ('%.2f' % np.var(six_type_list[six_negative_end_index+1 : ])), ('%.2f' % np.median(six_type_list[six_negative_end_index+1 : ]))), linewidth=3.0) # 刻度值字体大小设置 plt.tick_params(labelsize=40) plt.legend(loc=0, fontsize = 40) plt.savefig('C:/Users/Mloong/Desktop/f_image/{} characteristics.png'.format(c_type), dpi=300) plt.show()
2.散点图
_type = 'median' plt.scatter(range(0, 3790), two_avgAbs_list[0:3790], c='r') # 散点图的x参数不可省略 plt.scatter(range(3791, 4939), two_avgAbs_list[3791:4939], c='g') plt.title('{} ml_id=2 waveType=2'.format(_type)) plt.savefig('C:/Users/Mloong/Desktop/f_image/{} scatter ml_id=2 waveType=2.png'.format(_type), dpi=300) plt.show()
3.概率分布图
# 概率分布图 type_list = two_median_list _type = 'median' num_bins = 100 # 条状图的个数 plt.hist(type_list[:3790], num_bins, normed=1, facecolor='blue', alpha=0.5) plt.hist(type_list[3791:], num_bins, normed=1, facecolor='red', alpha=0.5) plt.xlabel('Value') plt.ylabel('Probability') plt.title('{} probability distribution ml_id=2 waveType=2'.format(_type)) plt.subplots_adjust(left=0.15) plt.savefig('C:/Users/Mloong/Desktop/f_image/{} probability distribution ml_id=2 waveType=2.png'.format(_type), dpi=300) plt.show()
4.箱形图
_type = 'pca_value' import seaborn as sns plt.subplot(121) plt.title('{} (ml_id=2 waveType=2)'.format(_type)) sns.set(style='whitegrid') # 设置背景 sns.boxplot(x='label', y='{}'.format(_type), data=two_data, hue='label') # data参数是一个dataframe对象,其中x和y分别时这个dataframe中的列名 ######################################################################################### plt.subplot(122) plt.title('{} (ml_id=6 waveType=2)'.format(_type)) sns.set(style='whitegrid') # 设置背景 sns.boxplot(x='label', y='{}'.format(_type), data=six_data, hue='label') # 绘制箱形图 plt.savefig('C:/Users/Mloong/Desktop/f_image/{} box figure.png'.format(_type), dpi=300) plt.show()
5.热图
# 2.相关矩阵 import seaborn as sns corrmat = two_data[['avs', 'avgAbs', 'rms', 'rms2', 'wave', 'pulse', 'PeekFlag', 'Margin', 'Skewness', 'Kurtosis', 'median', 'pca_value', 'label']].corr() # .corr()求相关矩阵,此时返回的值corrmat为相关矩阵 f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=.8, square=True) # 将这个相关矩阵以热图的形式画出来 plt.savefig('C:/Users/Mloong/Desktop/f_image/two correlation matrix.png', dpi=300) plt.show()