线性代数与Python

1.向量

向量是指可以加总(以生成新的向量),可以乘以标量(即数字),也可以生成新的向量的对象。
向量是有限维空间的点。

1.1向量例子

如果你有很多人的身高、体重、年龄数据,就可以把数据记为三维向量(height, weight, age)。
如果你教的一个班有四门考试,就可以把学生成绩记为四维向量(exam1, exam2, exam3, exam4)。

1.2向量加法与减法

向量以分量方式(componentwise)做运算。这意味着,如果两个向量v 和w 长度相同,那它们的和就是一个新的向量,其中向量的第一个元素等于v[0] + w[0],第二个元素等于v[1] + w[1],以此类推。(如果两个向量长度不同,则不能相加。)

  • 向量加法函数
def vector_add(v, w):
    retrun [v_i + w_i for v_i, w_i in zip(v,w)]
  • 向量减法函数
def vector_add(v, w):
    retrun [v_i - w_i for v_i, w_i in zip(v,w)]
  • 多个向量的加法运算
def vector_sum(*vectors):
    result = vectors[0]
    for vector in vectors[1:]:
        result = vector_add(result, vector)
     return result

#方法2
import functools import reduce
def vector_sum(*vectors):
    return reduce(vector_add, vectors)

1.3向量的乘法

  • 标量与向量的乘法
def scalar_multiply(c,v):
    return [c * v_i for v_i in v]
  • 系列向量的均值
def vector_mean(*vectors):
    n = len(vectors)
    return scalar_multiply(1/n, vector_sum(vectors))
  • 点乘
def dot(v,w):
    return sum(v_i * w_i for v_i, w_i in zip(v,w))
  • 向量的平方和
def sum_of_squares(v)
    return dot(v,v)
  • 向量的长度
import math
def magnitude(v)
    return math.sqrt(sum_of_squares(v))
  • 两点间的距离
def squared_distance(v,w):
    return sum_of_squares(vector_subtract(v,w))

def distance(v,w):
    return math.squrt(squared_distance(v,w))
    # return magnitude(vector_subtract(v,w))

2.矩阵

矩阵是一个二维的数据集合。我们将矩阵表示为列表的列表,每个内部列表的大小都一样,表示矩阵的一行。如果A是一个矩阵,那么A[i][j]就表示第i行第j列的元素。按照数学表达的惯例,我们通常用大写字母表示矩阵。

2.1矩阵例子

2.2矩阵的形状

def shape(A):
    num_rows = len(A)
    num_cols = len(A[0] if A else 0)
    return num_rows, num_cols

如果一个矩阵有n 行k 列,则可以记为n×k 矩阵。我们可以把这个n×k 矩阵的每一行都当作一个长度为k 的向量,把每一列都当作一个长度为n 的向量:

2.3矩阵的创建函数

def make_matrix(num_rows, num_cols, entry_fn):
    return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)]

def is_diagonal(i, j):
    return 1 if i == j else 0

make_matrix(5, 5, is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

参考《数据科学入门》

posted @ 2018-05-23 20:35  既生喻何生亮  阅读(1896)  评论(0编辑  收藏  举报