[Algorithm]树与二叉树
一.树与二叉树相关算法
1.二叉树按顺序结构存储,求编号为i和j的两个结点的最近公共祖先结点的值
1 ElemType CommonAncestor( SeqTree T, int i, int j )
2 {
3 while ( i != j )
4 {
5 if ( i > j ) i /= 2;
6 else j /= 2;
7 }
8 return T[i];
9 }
2.二叉树前序遍历非递归算法
1 void PreOrder( BiTree T )
2 {
3 BiTree S[MAXSIZE], p;
4 int top = -1;
5 p = T;
6 while ( p || top != -1 )
7 {
8 if (p)
9 {
10 visit( p );
11 S[++top] = p; p = p->lchild;
12 }
13 else
14 {
15 p = S[top--]; p = p->rchild;
16 }
17 }
18 }
3.二叉树中序遍历非递归算法
1 void InOrder( BiTree T )
2 {
3 BiTree S[MAXSIZE], p;
4 int top = -1;
5 p = T;
6 while ( p || top != -1 )
7 {
8 if (p )
9 {
10 S[++top] = p; p = p->lchild;
11 }
12 else
13 {
14 p = S[top--]; visit( p ); p = p->rchild;
15 }
16 }
17 }
4.二叉树后序遍历非递归算法
1 void PostOrder( BiTree T )
2 {
3 BiTree Q[MAXSIZE], p, r;
4 int top = -1;
5 p = T; r = NULL;
6 while ( p || top != -1 )
7 {
8 if (p) // 走到最左边
9 {
10 S[++top] = p; p = p->lchild;
11 }
12 else // 向右
13 {
14 p = S[top];
15 if (p->rchild&&p->rchild!=r) // 转向右
16 p = p->rchild;
17 else // 根
18 {
19 p = S[top--];
20 visit( p );
21 r = p;
22 p = NULL;
23 }
24 }
25 }
26 }
5.二叉树层次遍历算法
1 void LevelOrder( BiTree T )
2 {
3 BiTree Q[MAXSIZE], p;
4 int front = -1, rear = -1;
5 Q[++rear] = T;
6 while ( front != rear )
7 {
8 p = Q[++front];
9 visit( p );
10 if ( p->lchild ) Q[++rear] = p->lchild;
11 if ( p->rchild ) Q[++rear] = p->rchild;
12 }
13 }
6.二叉树的自下而上,从右到左的层次遍历算法
1 void InvertLevel( BiTree T )
2 {
3 BiTree S[MAXSIZE], Q[MAXSIZE], p;
4 int front = -1, rear = -1, top = -1;
5 Q[++rear] = T;
6 while ( front != rear )
7 {
8 p = Q[++front];
9 S[++top] = p;
10 if ( p->lchild ) Q[++rear] = p->lchild;
11 if ( p->rchild ) Q[++rear] = p->rchild;
12 }
13 while ( top!=-1 )
14 {
15 p = S[top--]; visit( p );
16 }
17 }
7.求二叉树高度(递归)
1 int BtDepth( BiTree T )
2 {
3 if ( T == NULL ) return 0;
4 int ldepth, rdepth;
5 ldepth = BtDepth( T->lchild );
6 rdepth = BtDepth( T->rchild );
7 return ldepth > rdepth ? ldepth + 1 : rdepth + 1;
8 }
8.求二叉树高度(非递归)
1 // 法一思路:后序遍历,最大栈长即为树的高度
2 int BtDepth( BiTree T )
3 {
4 BiTree S[MAXSIZE], p, r;
5 int top = -1, depth = 0;
6 while ( p || top != -1 )
7 {
8 if ( p )
9 {
10 S[++top] = p; p = p->lchild;
11 }
12 else
13 {
14 p = S[top];
15 if ( p->rchild&&p->rchild != r )
16 p = p->rchild;
17 else
18 {
19 if (top+1>depth)
20 depth = top + 1;
21 p = S[top--];
22 r = p;
23 p = NULL;
24 }
25 }
26 }
27 return depth;
28 }
1 // 法二思路:层次遍历,层数即为高度
2 int BtDepth( BiTree T )
3 {
4 BiTree Q[MAXSIZE], p;
5 int front = -1, rear = -1, last = 0, depth = 0;
6 Q[++rear] = T;
7 while ( front != rear )
8 {
9 p = Q[++front];
10 if ( p->lchild )
11 Q[++rear] = p->lchild;
12 if ( p->rchild )
13 Q[++rear] = p->rchild;
14 if ( front == last )
15 {
16 depth++;
17 last = rear;
18 }
19 }
20 return depth;
21 }
9.先许遍历序列和中序遍历序列分别存放于两个一维数组$A[1...n],B[1...n]$中,编写算法建立该二叉树的二叉链表
1 BiTree PreInCreate( ElemType A[], ElemType B[], int l1, int h1, int l2, int h2 )
2 {
3 BiTree root = ( BiTree ) malloc( sizeof( BiTNode ) );
4 int i, llen, rlen;
5 root->data = A[l1];
6 for ( i = l2; B[i] != root->data; i++ );
7 llen = i - l2;
8 rlen = h2 - i;
9 if ( llen )
10 root->lchild = PreInCreate( A, B, l1 + 1, l1 + llen, l2, l2 + llen - 1 );
11 else
12 root->rchild = NULL;
13 if ( rlen )
14 root->rchild = PreInCreate( A, B, h1 - rlen + 1, h1, h2 - rlen + 1, h2 );
15 else
16 root->rchild = NULL;
17 return root;
18 }
10.判断二叉树是否是完全二叉树
1 bool IsComplete( BiTree T )
2 {
3 if ( T == NULL ) return true;
4 BiTree Q[MAXSIZE], p;
5 int front = -1, rear = -1;
6 Q[++rear] = T;
7 while ( front != rear )
8 {
9 p = Q[++front];
10 if (p)
11 {
12 Q[++rear] = p->lchild;
13 Q[++rear] = p->rchild;
14 }
15 else
16 {
17 while ( front != rear )
18 {
19 p = Q[++front];
20 if ( p ) return false;
21 }
22 }
23 }
24 return true;
25 }
11.计算一棵给定二叉树的所有双分支结点个数
1 int N2Nodes( BiTree T )
2 {
3 if ( T == NULL ) return 0;
4 if ( T->lchild && T->rchild )
5 return N2Nodes( T->lchild ) + N2Nodes( T->rchild ) + 1;
6 return N2Nodes( T->lchild ) + N2Nodes( T->rchild );
7 }
12.将二叉树中所有结点的左,右子树进行交换
1 void SwapTree( BiTree T )
2 {
3 if ( T == NULL ) return;
4 SwapTree( T->lchild );
5 SwapTree( T->rchild );
6 swap( T->lchild, T->rchild );
7 }
13.求二叉树先序遍历序列中第$k(1\le k\le \text 二叉树结点个数)$个结点的值
1 int i = 1;
2 ElemType PreNodeK( BiTree T, int k )
3 {
4 if ( T == NULL ) return '#';
5 if ( i == k ) return T->data;
6 i++; // 下一个结点
7 ElemType ch = PreNodeK( T->lchild, k );
8 if ( ch != '#' ) return ch;
9 ch = PreNodeK( T->rchild, k );
10 return ch;
11 }
14.二叉树中,对于每一个元素值为x的结点,删去以它为根的子树,并释放相应的空间
1 void DeleteNode( BiTree T )
2 {
3 if ( T == NULL ) return;
4 DeleteNode( T->lchild );
5 DeleteNode( T->rchild );
6 free( T );
7 }
1 // 法一:递归
2 void DeleteAllXNode( BiTree T, ElemType x )
3 {
4 if ( T == NULL ) return;
5 if ( T->data == x )
6 {
7 DeleteNode( T ); return;
8 }
9 DeleteAllXNode( T->lchild, x );
10 DeleteAllXNode( T->rchild, x );
11 }
1 // 法二:非递归
2 void DeleteAllXNode( BiTree T, ElemType x )
3 {
4 if ( T == NULL ) return;
5 BiTree Q[MAXSIZE], p;
6 int front = -1, rear = -1;
7 Q[++rear] = T;
8 while ( front != rear )
9 {
10 p = Q[++front];
11 if ( p->data == x ) DeleteNode( p );
12 else
13 {
14 if ( p->lchild ) Q[++rear] = p->lchild;
15 if ( p->rchild ) Q[++rear] = p->rchild;
16 }
17 }
18 }
15.输出二叉树中值为x的结点$(\le 1)$个的所有祖先
1 // 法一:递归
2 bool AllAncestorX( BiTree T, ElemType x )
3 {
4 if ( T == NULL ) return false;
5 if ( T->data == x ) return true;
6 bool b1, b2;
7 b1 = AllAncestorX( T->lchild, x );
8 b2 = AllAncestorX( T->rchild, x );
9 if ( b1 || b2 ) visit( T );
10 return b1 || b2;
11 }
1 // 法二:非递归
2 // 思路: 后序遍历非递归方式中,保留在栈中所有元素(除栈顶外)必然是栈顶的祖先结点,只要找到x结点,将所有结点出栈即可
3 void AllAncestorX( BiTree T, ElemType x )
4 {
5 if ( T == NULL ) return;
6 BiTree S[MAXSIZE], p, r;
7 int top = -1;
8 p = T; r = NULL;
9 while ( p||top!=-1 )
10 {
11 if (p)
12 {
13 S[++top] = p; p = p->lchild;
14 }
15 else
16 {
17 p = S[top];
18 if ( p->rchild&&p->rchild != r )
19 p = p->rchild;
20 else
21 {
22 p = S[top--];
23 if (p->data==x)
24 {
25 while ( top != -1 )
26 {
27 p = S[top--]; visit( p );
28 }
29 }
30 r = p;
31 p = NULL;
32 }
33 }
34 }
35 }
16.p,q为二叉树中任意两个结点的指针,编写算法找到p,q的最近公共祖先结点(递归)
1 // 思路: ①左子树中能找到p(或q),右子树中能找到q(或p),的结点一定为p,q的最近公共结点
2 // ②p,q都在右子树上,则深度低的为公共祖先
3 // ③p,q都在左子树上,则深度低的为公共祖先
4 // 三种情况 o <-root(此时为公共祖先) o <-root o <-root
5 // / \ \ /
6 // p-> o o <-q o <-p(此时为公共祖先为right) o <-p(此时为公共祖先left)
7 // \ /
8 // o <-q o <-q
9 BiTree Ancestor( BiTree root, BiTNode *p, BiTNode *q )
10 {
11 if ( !root || !p || !q ) return NULL;
12 if ( p == root || q == root ) return root;
13 BiTree left, right;
14 /*
15 * ①在左子树中,若找到p,q中一个,则返回一个
16 * ②在左子树中,若找到p,q(全),则返回较近的一个(高度较低的)
17 */
18 left = Ancestor( root->lchild, p, q );
19 /*
20 * ①在右子树中,若找到p,q中一个,则返回一个
21 * ②在右子树中,若找到p,q(全),则返回较近的一个(高度较低的)
22 */
23 right = Ancestor( root->rchild, p, q );
24 if ( left&&right ) return root;
25 return left ? left : right;
26 }
17.求非空二叉树的宽度
1 int TreeWidth( BiTree T )
2 {
3 BiTree Q[MAXSIZE], p;
4 int front = -1, rear = -1, maxWidth = 0;
5 Q[++rear] = T;
6 while ( front != rear )
7 {
8 int width = rear - front;
9 if ( maxWidth < width )
10 maxWidth = width;
11 while ( width-- )
12 {
13 p = Q[++front];
14 if ( p->lchild ) Q[++rear] = p->lchild;
15 if ( p->rchild ) Q[++rear] = p->rchild;
16 }
17 }
18 return maxWidth;
19 }
18.一棵满二叉树(所有结点值均不同),已知其先序序列为pre,设计算法求其后序序列post
1 // 思路: 每次都会确定出后序的一个位置并划分为左右两块,再分别在这左右两块中继续确定其他元素
2 // 先序: x| | |
3 // 后序: | | |x
4 void PreToPost( ElemType pre[], int l1, int h1, ElemType post[], int l2, int h2 )
5 {
6 if ( h1 < l1 ) return;
7 post[h2] = pre[l1]; // 确定出一个后序位置
8 int half = ( h1 - l1 ) / 2;
9 PreToPost( pre, l1 + 1, l1 + half, post, l2, l2 + half - 1 );
10 PreToPost( pre, h1 - half + 1, h1, post, h2 - half, h2 - 1 );
11 }
19.将二叉树叶子结点按从左到右连成单链表,表头指针为head,叶结点的右指针域存放单链表指针
1 BiTree head, pre = NULL;
2 BiTree InOrder( BiTree bt )
3 {
4 if ( bt == NULL ) return NULL;
5 InOrder( bt->lchild );
6 if ( !bt->lchild && !bt->rchild )
7 {
8 if (!pre)
9 {
10 head = pre = bt;
11 }
12 else
13 {
14 pre->rchild = bt; pre = bt;
15 }
16 }
17 InOrder( bt->rchild );
18 pre->rchild = NULL;
19 return head;
20 }
20.判断两棵二叉树是否相似.(注:不要求结点值相同,只要树的外形相同即可)
1 bool Similar( BiTree T1, BiTree T2 )
2 {
3 if ( T1 == NULL && T2 == NULL )
4 return true;
5 else if ( T1 == NULL || T2 == NULL )
6 return false;
7 else if ( Similar( T1->lchild, T2->lchild ) && Similar( T1->rchild, T2->rchild ) )
8 return true;
9 return false;
10 }
21.将表达式树转换为等价的中缀表达式(通过括号反映操作符的计算次序)并输出
1 // 思路: 表达式树的中序序列加上必要的括号即为等价的中缀表达式.除根结点外,遍历到其他结点时在遍历其左子树之前加上左括号,在遍历完右子树后加上右括号
2 void BiTreeToExp( BiTree T, int deep )
3 {
4 if ( T == NULL ) return;
5 else if ( !T->lchild && !T->rchild ) visit( T );
6 else
7 {
8 if ( deep > 1 ) printf( "(" );
9 BiTreeToExp( T->lchild, deep + 1 );
10 visit( T );
11 BiTreeToExp( T->rchild, deep + 1 );
12 if ( deep > 1 ) printf( "(" );
13 }
14 }
22.求孩子兄弟表示法存储的森林的叶子节点数
1 typedef struct CSNode
2 {
3 ElemType data;
4 struct CSNode *firstchild, *nextsibling;
5 }CSNode, *CSTree;
6
7 int Leaves( CSTree T )
8 {
9 if ( T == NULL ) return 0;
10 if ( T->firstchild == NULL )
11 return 1 + Leaves( T->nextsibling );
12 else
13 return Leaves( T->firstchild ) + Leaves( T->nextsibling );
14 }
23.以孩子兄弟链表为存储结构,求树的高度(深度)(递归)
1 int Height( CSTree T )
2 {
3 if ( T == NULL ) return 0;
4 int hc, hs;
5 hc = Height( T->firstchild ) + 1;
6 hs = Height( T->nextsibling );
7 return hc > hs ? hc : hs;
8 }
24.二叉排序树的查找(非递归)
1 BiTree BSTSearch( BiTree T, ElemType key )
2 {
3 while ( T && key != T->data )
4 {
5 if ( key < T->data )
6 T = T->lchild;
7 else
8 T = T->rchild;
9 }
10 return T;
11 }
或
1 BiTree BSTSearch( BiTree T, ElemType key )
2 {
3 while ( T )
4 {
5 if ( T->data == key ) return T;
6 else if ( T->data > key )
7 T = T->lchild;
8 else
9 T = T->rchild;
10 }
11 return T;
12 }
25.二叉排序树的插入(递归)
1 bool BSTInsert( BiTree& T, ElemType key )
2 {
3 if (!T)
4 {
5 T = ( BiTree ) malloc( sizeof( BiTNode ) );
6 T->data = key;
7 T->lchild = T->rchild = NULL;
8 return true;
9 }
10 else if ( T->data == key ) return false;
11 else if ( T->data > key ) return BSTInsert( T->lchild, key );
12 else return BSTInsert( T->rchild, key );
13 }
26.计算二叉树的带权路径长度(递归)
1 int wpl = 0;
2 int WPL_PreOrder( BiTree T, int deep )
3 {
4 if ( T == NULL ) return 0;
5 if ( !T->lchild && !T->rchild )
6 wpl += deep * T->weight;
7 else
8 {
9 if ( T->lchild ) WPL_PreOrder( T->lchild, deep + 1 );
10 if ( T->rchild ) WPL_PreOrder( T->rchild, deep + 1 );
11 }
12 return wpl;
13 }
27.计算二叉树的带权路径长度(非递归)
1 // 思路: 层序遍历的思想
2 int wpl = 0;
3 int WPL_LevelOrder( BiTree T )
4 {
5 if ( T == NULL ) return 0;
6 BiTree Q[MAXSIZE], p;
7 int front = -1, rear = -1, depth = 0, last = 0;
8 Q[++rear] = T;
9 while ( front != rear )
10 {
11 p = Q[++front];
12 if ( !p->lchild && !p->rchild )
13 wpl += depth * p->weight;
14 else
15 {
16 if ( p->lchild ) Q[++rear] = p->lchild;
17 if ( p->rchild ) Q[++rear] = p->rchild;
18 }
19 if ( front == last )
20 {
21 depth++; last = rear;
22 }
23 }
24 return wpl;
25 }
28.判断二叉树是否为二叉排序树
1 ElemType preVal = MIN;
2 bool IsBST( BiTree T )
3 {
4 if ( T == NULL ) return true;
5 if ( !IsBST( T->lchild ) ) return false;
6 if ( preVal >= T->data )
7 return false;
8 else
9 preVal = T->data;
10 if ( !IsBST( T->rchild ) ) return false;
11 return true;
12 }
29.求出指定结点在二叉排序树中的层次
1 int Level( BiTree T, BiTree p )
2 {
3 if ( T == NULL ) return 0;
4 int n = 1;
5 while ( T->data != p->data )
6 {
7 n++;
8 if ( p->data < T->data )
9 T = T->lchild;
10 else
11 T = T->rchild;
12 }
13 return n;
14 }
30.判断二叉树是否为平衡二叉树
1 bool IsAVL( BiTree T, int& h )
2 {
3 int h1 = 0, h2 = 0;
4 if (T==NULL )
5 {
6 h = 0; return true;
7 }
8 if ( IsAVL( T->lchild, h1 ) && IsAVL( T->rchild, h2 ) )
9 {
10 if ( abs( h1 - h2 ) <= 1 )
11 {
12 h = 1 + ( h1 > h2 ? h1 : h2 );
13 return true;
14 }
15 }
16 return false;
17 }
31.从大到小输出二叉排序中所有值不小于k的关键字
1 void DesOutput( BiTree T, ElemType k )
2 {
3 if ( T == NULL ) return;
4 DesOutput( T->rchild, k );
5 if ( T->data >= k )
6 visit( T );
7 else
8 return;
9 DesOutput( T->lchild, k );
10 }
32.在二叉排序树上查找第$k(1\le k\le n)$小的元素,要求平均时间复杂度为$O(log_{2}n)$二叉排序树上的每个结点中除data,lchild,rchild外,还增加一个count成员,保存以该结点为根的子树上的结点个数
1 // 法一
2 BiTree SearchSmallK( BiTree T, int k )
3 {
4 if ( k<1 || k>T->count ) return NULL;
5 if ( T->lchild )
6 {
7 if ( k <= T->lchild->count )
8 return SearchSmallK( T->lchild, k );
9 else if ( k == T->lchild->count + 1 )
10 return T;
11 else
12 return SearchSmallK( T->rchild, k - ( T->lchild->count + 1 ) );
13 }
14 else
15 {
16 if ( k == 1 ) return T;
17 else return SearchSmallK( T->rchild, k - 1 );
18 }
19 }
1 // 法二
2 BiTree SearchSmallK( BiTree T, int k )
3 {
4 if ( k<1 || k>T->count ) return NULL;
5 if ( T->lchild )
6 {
7 if ( k <= T->lchild->count )
8 return SearchSmallK( T->lchild, k );
9 else
10 k -= T->lchild->count;
11 }
12 if ( k == 1 ) return T;
13 if ( T->rchild )
14 return SearchSmallK( T->rchild, k - 1 );
15 }
33.对于含有$+,-,*,/$及括号的算术表达式(中缀表达式)写一个算法,将该表达式构造成相应的二叉树表示
1 // 思想: 最后使用的操作符作为根.即:先+,-后*,/
2 // 例如: a+b*(c-d)-e/f构造的表达式树如下:
3 // -
4 // / \
5 // + /
6 // / \ / \
7 // a * e f
8 // / \
9 // b -
10 // / \
11 // c d
12 // 通过该表达式树,可以很容易得到:
13 // 前缀表达式: -+a*b-cd/ef
14 // 中缀表达式: a+b*c-d-e/f
15 // 后缀表达式: abcd-*+ef/-
16 BiTNode* BuildTree( char* exp, int s, int e )
17 {
18 if ( e - s == 1 )
19 {
20 BiTNode* p = ( BiTNode* ) malloc( sizeof( BiTNode ) );
21 p->data = exp[s];
22 p->lchild = p->rchild = NULL;
23 return p;
24 }
25 int c1 = -1, c2 = -1, c = 0, i;
26 for ( i = s; i < e; i++ )
27 {
28 if ( exp[i] == '(' ) c++;
29 else if ( ( exp[i] == '+' || exp[i] == '-' ) && !c )
30 c1 = i;
31 else if ( ( exp[i] == '*' || exp[i] == '/' ) && !c )
32 c2 = i;
33 }
34 if ( c1 < 0 ) c1 = c2;
35 if ( c1 < 0 ) return BuildTree( exp, s + 1, e - 1 );
36 BiTree* p = ( BiTNode* ) malloc( sizeof( BiTNode ) );
37 p->data = exp[c1];
38 p->lchild = BuildTree( exp, s, c1 );
39 p->rchild = BuildTree( exp, c1 + 1, e );
40 return p;
41 }