每天努力一点点,坚持下去 ------ 博客首页

多线程&多进程

一、线程&进程

对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。进程是很多资源的集合(进程相当于是一个工厂)。

· 线程是包含在进程里面的,线程是用来运行干活的,线程就是最小的单位(相当于是工厂里面的工人)

· 进程里面可以同时启用多个线程

由于每个进程至少要干一件事,所以,一个进程至少有一个线程。当然,像Word这种复杂的进程可以有多个线程,多个线程可以同时执行,多线程的执行方式和多进程是一样的,也是由操作系统在多个线程之间快速切换,让每个线程都短暂地交替运行,看起来就像同时执行一样。当然,真正地同时执行多线程需要多核CPU才可能实现。线程是最小的执行单元,而进程由至少一个线程组成。

我们在做事情的时候,一个人做是比较慢的,如果多个人一起来做的话,就比较快了,程序也是一样的,我们想运行的速度快一点的话,就得使用多进程,或者多线程,在python里面,多线程被很多人诟病,为什么呢,因为Python的解释器使用了GIL的一个叫全局解释器锁,它不能利用多核CPU,只能运行在一个cpu上面,但是你在运行程序的时候,看起来好像还是在一起运行的,是因为操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。这个叫做上下文切换。

二、多线程,python中的多线程使用theading模块

下面是一个简单多线程

复制代码
import threading
import time

def sayhi(num):  # 定义每个线程要运行的函数

    print("running on number:%s" % num)

    time.sleep(3)

if __name__ == '__main__':
    t1 = threading.Thread(target=sayhi, args=(1,))  # 生成一个线程实例
    t2 = threading.Thread(target=sayhi, args=(2,))  # 生成另一个线程实例
    t1.start()  # 启动线程
    t2.start()  # 启动另一个线程
复制代码

第一个参数是线程函数变量,第二个参数args是一个数组变量参数,如果只传递一个值,就只需要i, 如果需要传递多个参数,那么还可以继续传递下去其他的参数,其中的逗号不能少,少了就不是数组了,就会出错。

下面是另一种启动多线程的方式,继承式:

复制代码
import threading
import time

class MyThread(threading.Thread):
    def __init__(self, num):
        threading.Thread.__init__(self)
        self.num = num

    def run(self):  # 定义每个线程要运行的函数

        print("running on number:%s" % self.num)

        time.sleep(3)

if __name__ == '__main__':
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start() 
复制代码

这两种方式没有什么区别,两种写法而已,我个人喜欢用第一种,更简单一些。

线程等待,多线程在运行的时候,每个线程都是独立运行的,不受其他的线程干扰,如果想在哪个线程运行完之后,再做其他操作的话,就得等待它完成,那怎么等待呢,使用join,等待线程结束

复制代码
import threading,time

def run():
    print('qqq')
    time.sleep(1)
    print('done!')
lis = []
for i in range(5):#启用多个线程可以使用for循环
    t = threading.Thread(target=run)
    lis.append(t)
    t.start()
for t in lis:
    t.join()
print('over')
复制代码

守护线程,什么是守护线程呢,就相当于你是一个国王(非守护线程),然后你有很多仆人(守护线程),这些仆人都是为你服务的,一但你死了,那么你的仆人都给你陪葬。

复制代码
import time

def run():
    print('qqq')
    time.sleep(1)
    print('done!')

for i in range(5):
    t = threading.Thread(target=run)
    t.setDaemon(True)
    t.start()
print('over')
复制代码

线程锁,线程锁就是,很多线程一起在操作一个数据的时候,可能会有问题,就要把这个数据加个锁,同一时间只能有一个线程操作这个数据。 


下面来个简单的爬虫,看下多线程的效果

三、多进程

上面说了Python里面的多线程,是不能利用多核CPU的,如果想利用多核CPU的话,就得使用多进程,python中多进程使用multiprocessing模块。

复制代码
from multiprocessing import Process
import time

def f(name):
    time.sleep(2)
    print('hello', name)
p = Process(target=f, args=('niu',))
p.start()
p.join()  
复制代码

四、进程池

还可以使用进程池来快速启动几个进程,使用进程池的好处的就是他会自动管理进程数,咱们只需要给他设置一个最大的数就ok了。有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务。

posted @   他还在坚持嘛  阅读(397)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
点击右上角即可分享
微信分享提示