redis_08 _ 哨兵集群:哨兵挂了,主从库还能切换吗
上节课,我们学习了哨兵机制,它可以实现主从库的自动切换。通过部署多个实例,就形成了一个哨兵集群。哨兵集群中的多个实例共同判断,可以降低对主库下线的误判率。
但是,我们还是要考虑一个问题:如果有哨兵实例在运行时发生了故障,主从库还能正常切换吗?
实际上,一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。
如果你部署过哨兵集群的话就会知道,在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的IP和端口,并没有配置其他哨兵的连接信息。
sentinel monitor <master-name> <ip> <redis-port> <quorum>
这些哨兵实例既然都不知道彼此的地址,又是怎么组成集群的呢?要弄明白这个问题,我们就需要学习一下哨兵集群的组成和运行机制了。
基于pub/sub机制的哨兵集群组成
哨兵实例之间可以相互发现,要归功于Redis提供的pub/sub机制,也就是发布/订阅机制。
哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的IP地址和端口。
除了哨兵实例,我们自己编写的应用程序也可以通过Redis进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
在主从集群中,主库上有一个名为“__sentinel__:hello
”的频道,不同哨兵就是通过它来相互发现,实现互相通信的。
我来举个例子,具体说明一下。在下图中,哨兵1把自己的IP(172.16.19.3)和端口(26579)发布到“__sentinel__:hello
”频道上,哨兵2和3订阅了该频道。那么此时,哨兵2和3就可以从这个频道直接获取哨兵1的IP地址和端口号。
然后,哨兵2、3可以和哨兵1建立网络连接。通过这个方式,哨兵2和3也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,比如说对主库有没有下线这件事儿进行判断和协商。
哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
那么,哨兵是如何知道从库的IP地址和端口的呢?
这是由哨兵向主库发送INFO命令来完成的。就像下图所示,哨兵2给主库发送INFO命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵1和3可以通过相同的方法和从库建立连接。
你看,通过pub/sub机制,哨兵之间可以组成集群,同时,哨兵又通过INFO命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。
但是,哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。
而且,在实际使用哨兵时,我们有时会遇到这样的问题:如何在客户端通过监控了解哨兵进行主从切换的过程呢?比如说,主从切换进行到哪一步了?这其实就是要求,客户端能够获取到哨兵集群在监控、选主、切换这个过程中发生的各种事件。
此时,我们仍然可以依赖pub/sub机制,来帮助我们完成哨兵和客户端间的信息同步。
基于pub/sub机制的客户端事件通知
从本质上说,哨兵就是一个运行在特定模式下的Redis实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供pub/sub机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。
频道有这么多,一下子全部学习容易丢失重点。为了减轻你的学习压力,我把重要的频道汇总在了一起,涉及几个关键事件,包括主库下线判断、新主库选定、从库重新配置。
知道了这些频道之后,你就可以让客户端从哨兵这里订阅消息了。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
举个例子,你可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:
SUBSCRIBE +odown
当然,你也可以执行如下命令,订阅所有的事件:
PSUBSCRIBE *
当哨兵把新主库选择出来后,客户端就会看到下面的switch-master事件。这个事件表示主库已经切换了,新主库的IP地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。
switch-master <master name> <oldip> <oldport> <newip> <newport>
有了这些事件通知,客户端不仅可以在主从切换后得到新主库的连接信息,还可以监控到主从库切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。
好了,有了pub/sub机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接了,再加上我们上节课介绍主库下线判断和选主依据,哨兵集群的监控、选主和通知三个任务就基本可以正常工作了。不过,我们还需要考虑一个问题:主库故障以后,哨兵集群有多个实例,那怎么确定由哪个哨兵来进行实际的主从切换呢?
由哪个哨兵执行主从切换?
确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。在具体了解这个过程前,我们再来看下,判断“客观下线”的仲裁过程。
哨兵集群要判定主库“客观下线”,需要有一定数量的实例都认为该主库已经“主观下线”了。我在上节课向你介绍了判断“客观下线”的原则,接下来,我介绍下具体的判断过程。
任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送is-master-down-by-addr命令。接着,其他实例会根据自己和主库的连接情况,做出Y或N的响应,Y相当于赞成票,N相当于反对票。
一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的quorum配置项设定的。例如,现在有5个哨兵,quorum配置的是3,那么,一个哨兵需要3张赞成票,就可以标记主库为“客观下线”了。这3张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。
此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader选举”。因为最终执行主从切换的哨兵称为Leader,投票过程就是确定Leader。
在投票过程中,任何一个想成为Leader的哨兵,要满足两个条件:第一,拿到半数以上的赞成票;第二,拿到的票数同时还需要大于等于哨兵配置文件中的quorum值。以3个哨兵为例,假设此时的quorum设置为2,那么,任何一个想成为Leader的哨兵只要拿到2张赞成票,就可以了。
这么说你可能还不太好理解,我再画一张图片,展示一下3个哨兵、quorum为2的选举过程。
在T1时刻,S1判断主库为“客观下线”,它想成为Leader,就先给自己投一张赞成票,然后分别向S2和S3发送命令,表示要成为Leader。
在T2时刻,S3判断主库为“客观下线”,它也想成为Leader,所以也先给自己投一张赞成票,再分别向S1和S2发送命令,表示要成为Leader。
在T3时刻,S1收到了S3的Leader投票请求。因为S1已经给自己投了一票Y,所以它不能再给其他哨兵投赞成票了,所以S1回复N表示不同意。同时,S2收到了T2时S3发送的Leader投票请求。因为S2之前没有投过票,它会给第一个向它发送投票请求的哨兵回复Y,给后续再发送投票请求的哨兵回复N,所以,在T3时,S2回复S3,同意S3成为Leader。
在T4时刻,S2才收到T1时S1发送的投票命令。因为S2已经在T3时同意了S3的投票请求,此时,S2给S1回复N,表示不同意S1成为Leader。发生这种情况,是因为S3和S2之间的网络传输正常,而S1和S2之间的网络传输可能正好拥塞了,导致投票请求传输慢了。
最后,在T5时刻,S1得到的票数是来自它自己的一票Y和来自S2的一票N。而S3除了自己的赞成票Y以外,还收到了来自S2的一票Y。此时,S3不仅获得了半数以上的Leader赞成票,也达到预设的quorum值(quorum为2),所以它最终成为了Leader。接着,S3会开始执行选主操作,而且在选定新主库后,会给其他从库和客户端通知新主库的信息。
如果S3没有拿到2票Y,那么这轮投票就不会产生Leader。哨兵集群会等待一段时间(也就是哨兵故障转移超时时间的2倍),再重新选举。这是因为,哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。
需要注意的是,如果哨兵集群只有2个实例,此时,一个哨兵要想成为Leader,必须获得2票,而不是1票。所以,如果有个哨兵挂掉了,那么,此时的集群是无法进行主从库切换的。因此,通常我们至少会配置3个哨兵实例。这一点很重要,你在实际应用时可不能忽略了。
小结
通常,我们在解决一个系统问题的时候,会引入一个新机制,或者设计一层新功能,就像我们在这两节课学习的内容:为了实现主从切换,我们引入了哨兵;为了避免单个哨兵故障后无法进行主从切换,以及为了减少误判率,又引入了哨兵集群;哨兵集群又需要有一些机制来支撑它的正常运行。
这节课上,我就向你介绍了支持哨兵集群的这些关键机制,包括:
- 基于pub/sub机制的哨兵集群组成过程;
- 基于INFO命令的从库列表,这可以帮助哨兵和从库建立连接;
- 基于哨兵自身的pub/sub功能,这实现了客户端和哨兵之间的事件通知。
对于主从切换,当然不是哪个哨兵想执行就可以执行的,否则就乱套了。所以,这就需要哨兵集群在判断了主库“客观下线”后,经过投票仲裁,选举一个Leader出来,由它负责实际的主从切换,即由它来完成新主库的选择以及通知从库与客户端。
最后,我想再给你分享一个经验:要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值down-after-milliseconds。我们曾经就踩过一个“坑”。当时,在我们的项目中,因为这个值在不同的哨兵实例上配置不一致,导致哨兵集群一直没有对有故障的主库形成共识,也就没有及时切换主库,最终的结果就是集群服务不稳定。所以,你一定不要忽略这条看似简单的经验。
每课一问
这节课上,我给你提一个小问题。
假设有一个Redis集群,是“一主四从”,同时配置了包含5个哨兵实例的集群,quorum值设为2。在运行过程中,如果有3个哨兵实例都发生故障了,此时,Redis主库如果有故障,还能正确地判断主库“客观下线”吗?如果可以的话,还能进行主从库自动切换吗?此外,哨兵实例是不是越多越好呢,如果同时调大down-after-milliseconds值,对减少误判是不是也有好处呢?
欢迎你在留言区跟我交流讨论。如果你身边也有要学习哨兵集群相关知识点的朋友,也欢迎你能帮我把今天的内容分享给他们,帮助他们一起解决问题。我们下节课见。