Spark案例练习-UV的统计
关注公众号:分享电脑学习
回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)
云盘目录说明:
tools目录是安装包
res 目录是每一个课件对应的代码和资源等
doc 目录是一些第三方的文档工具
承接上一篇文档《Spark案例练习-PV的统计》
参数说明:
继续上面的PV代码编写即可
思路:UV的计算
1.数据进行过滤清洗,获取两个字段(时间、guid)
2.guid非空,时间非空,时间字符串的长度必须大于10
3.将同一天的数据放在一起,根据guid去重,统计去重的结果
代码:
val rdd2 = rdd.map(line => line.split("\t"))
.filter(arr => {
//保留正常数据
arr.length >=3 && arr(2).trim.nonEmpty && arr(0).trim.length > 10
})
.map(arr => {
val date = arr(0).trim.substring(0,10)
val guid = arr(2).trim
(date,guid) // (date,url)
})
继续编写代码
有两种方式:
1. 基于groupByKey进行UV的统计
2. 基于reduceByKey实现UV的统计
先看基于groupByKey进行UV的统计
val uvRdd = rdd2.groupByKey()
.map(t => {
val date = t._1
val guids = t._2
val uv = guids.toSet.size
(date,uv)
})
println("uv------------------" + uvRdd.collect().mkString(";"))
再看基于reduceByKey实现UV的统计
rdd2.map(t => {
((t._1,t._2),1)
})
.reduceByKey(_+_)
.map(_._1)
val uvRDD: RDD[(String, Int)] = rdd2.distinct()
.map(t => (t._1, 1))
.reduceByKey(_+_)
println("uv------------------" + uvRDD.collect().mkString(";"))
最终指标的合并
val pvuvRdd = pvRdd.fullOuterJoin(uvRdd)
.map(t => {
val date = t._1
val pv = t._2._1.getOrElse(0) //如果有值则返回对应的值,如果无值则返回0
val uv = t._2._2.getOrElse(0)
//返回结果
(date,pv,uv)
})
打印一下,可以看到合并的数据
数据输出(Driver、保存HDFS上,保存到RDBMS中)
数据返回给Driver
val result = pvuvRdd.collect()
保存到HDFS上
pvuvRdd.saveAsTextFile(s"hdfs://master:9000/data/pv_uv/${System.currentTimeMillis()}")
端口注意下,如果想用域名(master)就要确保在本地hosts文件配置了(win环境下)
运行一下,可以看到hdfs上有了这个文件
保存到RDBMS中、保存到非关系型数据库中
建库建表
CREATE DATABASE spark_test;
USE spark_test;
CREATE TABLE pvuv(
`date` DATE NOT NULL,
`pv` INT(11) NOT NULL,
`uv` INT(11) NOT NULL
)ENGINE=MYISAM DEFAULT CHARSET=utf8;
编写代码
其中val conn = DriverManager.getConnection("","","")这句话是url、user和password
代码
pvuvRdd.foreachPartition(iter => {
//1. 创建数据库连接对象
//2. 创建数据输出prepareStatement对象
val conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/spark_test","root","root")
val pstmt = conn.prepareStatement("insert into pvuv(date,pv,uv) values(?,?,?);")
//3. 数据迭代输出
iter.foreach(t => {
val date = t._1
val pv = t._2
val uv = t._3
pstmt.setString(1,date)
pstmt.setInt(2,pv)
pstmt.setInt(3,uv)
pstmt.executeUpdate()
})
//4. 关闭连接
conn.close()
pstmt.close()
})
运行代码,查看数据库
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构