Spark案例练习-PV的统计

关注公众号:分享电脑学习
回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)

云盘目录说明:

tools目录是安装包
res   目录是每一个课件对应的代码和资源等
doc  目录是一些第三方的文档工具

承接上一篇文档《Spark应用的结构

参数说明:

Spark案例练习-PV的统计

 

创建一个Maven项目

Pom文件引入jar,配置信息已经完成,大家可以直接去网盘下载,版本号根据自己的安装情况调整

部分示例

Spark案例练习-PV的统计

 

创建一个scala文件,编写代码

1. 构建SparkContext上下文对象

val conf = new SparkConf()
val sc = new SparkContext(conf)

此时可以运行这两行代码

Spark案例练习-PV的统计

 

会出现错误

Spark案例练习-PV的统计

 

需要添加一行代码

setMaster("local")// 指定应用在哪儿执行,可以是local、或者stadnalone、yarn、mesos集群
Spark案例练习-PV的统计

 

再运行一次

又报一次错,这个是要求指定应用的名字

Spark案例练习-PV的统计

 

添加代码

.setAppName("pvtest") //指定应用的名字
Spark案例练习-PV的统计

 

再运行就可以了(启动hadoop)

2. 基于sc构建RDD

端口为core-site.xml中配置的

Spark案例练习-PV的统计

 

将文件上传到指定目录

Spark案例练习-PV的统计

 

val path = "hdfs://ip:8020/data/page_views.data" //HDFS的schema 给定数据的路径
val rdd: RDD[String] = sc.textFile(path)
println("总共有" + rdd.count()+ "条数据")
Spark案例练习-PV的统计

 

运行可以看到显示

Spark案例练习-PV的统计

 

如果不想写schema的话,需要将hadoop的两个文件拷贝到项目的src/main/resources中

两个文件是hadoop的:hdfs-site.xml和core-site.xml

Spark案例练习-PV的统计

 

编写代码

val path = /data/page_views.data
Spark案例练习-PV的统计

 

运行也可以查看到结果

3. 业务实现

思路:

1)分析可知道:数据分为7个字段,业务需要三个字段(时间,URL,guid),计算某一个时间的PV的值
(2)数据进行过滤清洗,获取两个字段(时间、url)
(3)url非空,时间非空,时间字符串的长度必须大于104sql: select date, count(url) from page_view group by date;
(5sql: select date, count(1) from page_view group by date;
(6)分别用reduceByKey和groupByKey进行数据处理

我们一步步来

先分割数据

val rdd1 = rdd.map(line => line.split("\t"))

数据进行过滤清洗,获取两个字段(时间、url)

url非空,时间非空,时间字符串的长度必须大于10

.filter(arr => {
//保留正常数据
arr.length >2 && arr(1).trim.nonEmpty && arr(0).trim.length > 10
})

截取数据

.map(arr => {
val date = arr(0).trim.substring(0,10)
val url = arr(1).trim
(date,1) // (date,url)
})
Spark案例练习-PV的统计

 

基于reduceByKey做统计pv

val pvRdd = rdd1.reduceByKey(_+_)
println("pv------------------" + pvRdd.collect().mkString(";"))

数据表示2013年5月19日一共有100000条访问数据

Spark案例练习-PV的统计

 

也可以基于groupByKey实现pv统计(这个可以试一下,如果不行就使用reduceByKey)

groupByKey相当于把相同的key的value放到迭代器里面,也就是这些value都放到内存里面,如果value值数据量撑爆内存,就会OOM异常

val pvRdd = rdd1.groupByKey()
.map(t => {
val date = t._1
val pv = t._2.size
(date,pv)
})
println("pv------------------" + pvRdd.collect().mkString(";"))

与上面值相同

Spark案例练习-PV的统计

posted on   那山的狐狸  阅读(337)  评论(0编辑  收藏  举报

编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示