完整的TadGAN 环境列表
安装包版本
点击查看代码
完整的TadGan环境列表
(orion) C:\Users\User>pip list
WARNING: Ignoring invalid distribution -ensorflow-gpu (c:\users\user\appdata\roaming\python\python37\site-packages)
Package Version
--------------------------------------- ---------
absl-py 1.2.0
astor 0.8.1
astunparse 1.6.3
azure-cognitiveservices-anomalydetector 0.3.0
azure-common 1.1.28
azure-core 1.24.2
botocore 1.27.42
certifi 2022.6.15
charset-normalizer 2.1.0
click 8.1.3
cloudpickle 2.1.0
colorama 0.4.5
dask 2022.2.0
distributed 2022.2.0
docutils 0.15.2
featuretools 0.11.0
flatbuffers 2.0
fsspec 2022.7.1
future 0.18.2
gast 0.2.2
google-pasta 0.2.0
grpcio 1.48.0
h5py 2.10.0
HeapDict 1.0.1
idna 3.3
importlib-metadata 4.12.0
iso639 0.1.4
isodate 0.6.1
Jinja2 3.1.2
jmespath 1.0.1
joblib 1.1.0
Keras 2.3.1
Keras-Applications 1.0.8
Keras-Preprocessing 1.1.2
langdetect 1.0.9
lightfm 1.16
llvmlite 0.34.0
locket 1.0.0
Markdown 3.4.1
MarkupSafe 2.1.1
mlblocks 0.3.4
mlprimitives 0.2.5
mock 4.0.3
msgpack 1.0.4
msrest 0.7.1
networkx 2.6.3
nltk 3.7
numba 0.51.2
numpy 1.16.6
oauthlib 3.2.0
opencv-python 4.6.0.66
opt-einsum 3.3.0
orion-ml 0.3.2
packaging 21.3
pandas 0.24.2
partd 1.2.0
patsy 0.5.2
Pillow 9.2.0
pip 22.1.2
protobuf 3.20.1
psutil 5.9.1
pyparsing 3.0.9
python-dateutil 2.8.2
python-louvain 0.13
pyts 0.10.0
pytz 2022.1
PyWavelets 1.1.1
PyYAML 6.0
regex 2022.7.25
requests 2.28.1
requests-oauthlib 1.3.1
s3fs 0.4.2
scikit-image 0.14.5
scikit-learn 0.20.4
scipy 1.7.3
setuptools 61.2.0
six 1.16.0
smart-open 6.0.0
sortedcontainers 2.4.0
statsmodels 0.12.2
tabulate 0.8.10
tblib 1.7.0
tensorboard 1.15.0
tensorflow 1.15.5
tensorflow-cpu 1.15.0
tensorflow-cpu-estimator 1.15.1
tensorflow-estimator 1.15.1
termcolor 1.1.0
toolz 0.12.0
tornado 6.2
tqdm 4.64.0
typing_extensions 4.3.0
urllib3 1.26.11
Werkzeug 2.2.1
wheel 0.37.1
wincertstore 0.2
wrapt 1.14.1
xgboost 0.90
XlsxWriter 3.0.3
zict 2.2.0
zipp 3.8.1
WARNING: Ignoring invalid distribution -ensorflow-gpu (c:\users\user\appdata\roaming\python\python37\site-packages)
WARNING: Ignoring invalid distribution -ensorflow-gpu (c:\users\user\appdata\roaming\python\python37\site-packages)
WARNING: Ignoring invalid distribution -ensorflow-gpu (c:\users\user\appdata\roaming\python\python37\site-packages)
示例代码
点击查看代码
import numpy as np
from mlprimitives import load_primitive
X = np.array([1] * 100).reshape(1, -1, 1)
print(X.shape)
y = X[:, :, [0]] # signal to reconstruct from X (channel 0)
# 关键的模型配置文件在 orion.primitives.tadgan.TadGAN.json
primitive = load_primitive('orion.primitives.tadgan.TadGAN',
arguments={"X": X, "y": X, "epochs": 5, "batch_size": 1, "iterations_critic": 1})
primitive.fit()
# Epoch: 1/5, [Dx loss: [ 8.1564751e+00 -2.8269568e-02 -1.2753400e-03 8.1860197e-01]] [Dz loss: [ 1.5643368 -0.23620689 0.0099258 0.17906179]] [G loss: [1.0159907e+01 2.7486266e-04 9.8272383e-02 1.0061361e+00]]
# Epoch: 2/5, [Dx loss: [ 8.1122799e+00 2.5430264e-02 -5.7639816e-04 8.0874264e-01]] [Dz loss: [ 1.6766577 0.5785153 -0.23322849 0.13313708]] [G loss: [1.0037482e+01 1.5826018e-03 6.9854617e-02 9.9660456e-01]]
# Epoch: 3/5, [Dx loss: [ 7.8248177e+00 -1.0765485e-01 2.4232497e-03 7.9300493e-01]] [Dz loss: [ 2.9578063 1.347339 -0.10729899 0.17177662]] [G loss: [ 9.896642e+00 -4.145731e-03 7.847432e-02 9.822313e-01]]
# Epoch: 4/5, [Dx loss: [ 7.6695747 -0.13101332 0.00913733 0.77914506]] [Dz loss: [ 3.0698705 -0.06618145 -0.16412571 0.33001775]] [G loss: [ 9.235229 -0.01033833 0.15157706 0.909399 ]]
# Epoch: 5/5, [Dx loss: [ 7.3809795e+00 -2.5241375e-01 5.7032239e-03 7.6276898e-01]] [Dz loss: [ 3.2601674 0.6328457 -0.16581921 0.2793141 ]] [G loss: [ 8.786275 -0.02030257 -0.03958205 0.884616 ]]
y, critic = primitive.produce(X=X, y=y)
print("average reconstructed value: {:.2f}, critic score {:.2f}".format(y.mean(), critic[0][0]))
# average reconstructed value: 0.10, critic score 0.33
日志
点击查看代码
E:\Users\User\miniconda3\envs\orion\python.exe H:/AI_Gode/OrionDemo/TadGANDemo.py
(1, 100, 1)
E:\Users\User\miniconda3\envs\orion\lib\site-packages\sklearn\utils\validation.py:37: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
LARGE_SPARSE_SUPPORTED = LooseVersion(scipy_version) >= '0.14.0'
Using TensorFlow backend.
WARNING:tensorflow:From E:\Users\User\miniconda3\envs\orion\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
E:\Users\User\miniconda3\envs\orion\lib\site-packages\keras\engine\training.py:297: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
WARNING:tensorflow:From E:\Users\User\miniconda3\envs\orion\lib\site-packages\tensorflow_core\python\ops\math_grad.py:1424: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
2022-08-18 22:53:12.149362: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
WARNING:tensorflow:From E:\Users\User\miniconda3\envs\orion\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
E:\Users\User\miniconda3\envs\orion\lib\site-packages\keras\engine\training.py:297: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
2022-08-18 22:53:21.535270: E tensorflow/core/grappler/optimizers/dependency_optimizer.cc:697] Iteration = 0, topological sort failed with message: The graph couldn't be sorted in topological order.
2022-08-18 22:53:21.561498: E tensorflow/core/grappler/optimizers/dependency_optimizer.cc:697] Iteration = 1, topological sort failed with message: The graph couldn't be sorted in topological order.
2022-08-18 22:53:21.638274: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:533] model_pruner failed: Invalid argument: MutableGraphView::MutableGraphView error: node 'loss_2/model_2_loss/mean_squared_error/weighted_loss/concat' has self cycle fanin 'loss_2/model_2_loss/mean_squared_error/weighted_loss/concat'.
2022-08-18 22:53:21.816719: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:533] remapper failed: Invalid argument: MutableGraphView::MutableGraphView error: node 'loss_2/model_2_loss/mean_squared_error/weighted_loss/concat' has self cycle fanin 'loss_2/model_2_loss/mean_squared_error/weighted_loss/concat'.
2022-08-18 22:53:21.838843: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:533] arithmetic_optimizer failed: Invalid argument: The graph couldn't be sorted in topological order.
2022-08-18 22:53:21.860367: E tensorflow/core/grappler/optimizers/dependency_optimizer.cc:697] Iteration = 0, topological sort failed with message: The graph couldn't be sorted in topological order.
2022-08-18 22:53:21.883567: E tensorflow/core/grappler/optimizers/dependency_optimizer.cc:697] Iteration = 1, topological sort failed with message: The graph couldn't be sorted in topological order.
Epoch: 1/5, [Dx loss: [ 7.31224775e+00 -1.19276665e-01 1.84259005e-03 7.42968202e-01]] [Dz loss: [ 0.3067557 -0.44634065 -0.05312024 0.08062166]] [G loss: [1.0106481e+01 6.5685640e-04 1.1010410e-01 9.9957198e-01]]
E:\Users\User\miniconda3\envs\orion\lib\site-packages\keras\engine\training.py:297: UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
'Discrepancy between trainable weights and collected trainable'
Epoch: 2/5, [Dx loss: [ 7.1483636e+00 -5.6659371e-02 3.4755275e-03 7.2015476e-01]] [Dz loss: [ 1.3778638 -0.25603315 0.20017634 0.14337206]] [G loss: [ 9.6632853e+00 -2.9747246e-03 -1.9676825e-01 9.8630285e-01]]
Epoch: 3/5, [Dx loss: [7.0703130e+00 5.3725705e-02 4.7316586e-05 7.0165402e-01]] [Dz loss: [1.1239426 0.0685184 0.26869762 0.07867266]] [G loss: [ 8.9385529e+00 4.8824699e-04 -6.8461269e-01 9.6226776e-01]]
Epoch: 4/5, [Dx loss: [ 6.459007 -0.24500221 -0.00741195 0.6711421 ]] [Dz loss: [ 2.014074 -0.9310748 1.6808544 0.12642944]] [G loss: [ 7.505266 -0.0102396 -1.6289722 0.9144478]]
Epoch: 5/5, [Dx loss: [ 5.989165 -0.35496444 0.02346188 0.6320667 ]] [Dz loss: [3.7862666 0.18001929 2.4950943 0.11111528]] [G loss: [ 5.4227304 -0.03419049 -2.8799427 0.83368635]]
average reconstructed value: 0.13, critic score 0.43
Process finished with exit code 0
分类:
异常监测
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)