点击查看代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
iris = datasets.load_iris()
X, target = iris.data, iris.target
def knn_model_train(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, target, test_size=0.3,
random_state=111, shuffle=True, stratify=y)
k_range = range(1, 31)
cv_scores = []
for k in k_range:
knn = KNeighborsClassifier(k)
scores = cross_val_score(
knn, X_train, y_train, scoring="accuracy", cv=10)
cv_scores.append(scores.mean())
return cv_scores
def plt_knn_scores(cv_scores):
plt.figure(figsize=(8, 6))
plt.plot(cv_scores, "-o")
plt.xlabel("knn-k value", fontsize=12)
plt.ylabel("mean accuracy", fontsize=12)
plt.grid()
plt.title("KNN super-args of mean accuracy", fontsize=14)
plt.show()
cv_scores = knn_model_train(X, target)
plt_knn_scores(cv_scores)
点击查看代码
X_train, X_test, y_train, y_test = train_test_split(X, target, test_size=0.3,
random_state=111, shuffle=True, stratify=target)
k = 13
knn_best = KNeighborsClassifier(k)
knn_best.fit(X_train, y_train)
print("泛化精度是,%.5f" % knn_best.score(X_test, y_test))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)