Linux 编译的一些注意参数
-Wall 打开gcc的所有警告
-l参数就是用来指定程序要链接的库,-l参数紧接着就是库名,那么库名跟真正的库文件名有什么关系呢?就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把库文件名的头lib和尾.so去掉就是库名了。
好了现在我们知道怎么得到库名,当我们自已要用到一个第三方提供的库名字libtest.so,那么我们只要把libtest.so拷贝到/usr/lib里,编译时加上-ltest参数,我们就能用上libtest.so库了(当然要用libtest.so库里的函数,我们还需要与libtest.so配套的头文件)
放在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接了,但如果库文件没放在这三个目录里,而是放在其他目录里,这时我们只用-l参数的话,链接还是会出错,出错信息大概是:“/usr/bin/ld: cannot find -lxxx”,也就是链接程序ld在那3个目录里找不到libxxx.so,这时另外一个参数-L就派上用场了,比如常用的X11的库,它在/usr/X11R6/lib目录下,我们编译时就要用-L/usr/X11R6/lib -lX11参数,-L参数跟着的是库文件所在的目录名。再比如我们把libtest.so放在/aaa/bbb/ccc目录下,那链接参数就是-L/aaa/bbb/ccc -ltest
-l参数就是用来指定程序要链接的库,-l参数紧接着就是库名,那么库名跟真正的库文件名有什么关系呢?就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把库文件名的头lib和尾.so去掉就是库名了。
好了现在我们知道怎么得到库名,当我们自已要用到一个第三方提供的库名字libtest.so,那么我们只要把libtest.so拷贝到/usr/lib里,编译时加上-ltest参数,我们就能用上libtest.so库了(当然要用libtest.so库里的函数,我们还需要与libtest.so配套的头文件)
放在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接了,但如果库文件没放在这三个目录里,而是放在其他目录里,这时我们只用-l参数的话,链接还是会出错,出错信息大概是:“/usr/bin/ld: cannot find -lxxx”,也就是链接程序ld在那3个目录里找不到libxxx.so,这时另外一个参数-L就派上用场了,比如常用的X11的库,它在/usr/X11R6/lib目录下,我们编译时就要用-L/usr/X11R6/lib -lX11参数,-L参数跟着的是库文件所在的目录名。再比如我们把libtest.so放在/aaa/bbb/ccc目录下,那链接参数就是-L/aaa/bbb/ccc -ltest
一:编译过程的4个阶段:预处理,编译,汇编,链接;
1:最常用的方式
gcc hello.c -o hello
2:预处理后停止编译
gcc -E hello.c -o hello.i(.i通常为已经预处理过的C原始程序)
3:将hello.i编译为目标代码,可以使用-c参数来完成
gcc -c hello.i -o hello.o
也可以使用-x参数让gcc从指定的步骤开始.
4:将生成的目标文件链接成可执行文件
gcc hello.o -o hello
5:多个源文件时
gcc f1.c f2.c -o file
二:gcc参数的警告提示功能
1:-pedantic 使用了ANSI/ISO C语言扩展语法的地方将产生相应的警告信息
2:-Wall 产生尽可能多的警告信息,建议始终带上
3:-Werror 将所有的警告当成错误进行处理
三:库依赖
函数库实际上就是一些头文件和库文件的集合.
-I选项向gcc的头文件搜索路径中添加新的目录
-L选项向gcc的库文件搜索路径中添加新的目录
-l指定链接的库文件名,如 -ldavid 表示指示gcc去连接库文件libdavid.so
-static强制使用静态链接库
动态库文件(.so)和静态库文件(.a)的区别在于程序执行时所需的代码是运行时动态加载的,还是编译时静态加载的.gcc优先使用动态库
四:其他
-On 控制优化代码的生成,n是一个代表优先级别的整数;n取0~3;-O相当于-O1;
-O1 减小代码的长度和执行时间,一般包括线程跳转(Thread Jump)和延迟退栈(Deferred Stack Pops);
-O2 在O1基础上,进行一些额外调整,如处理器指令跳转;
-O3 在O2基础上,循环展开一些其他和处理器特性相关的优化工作;
-pipe:管道,它可以用来同时连接两个程序,其中一个程序的输出将直接作为另一个程序的输入,这样就可以避免使用临时文件,提高编译速度,但编译时消耗更多的内存.
-Dmacro 定义指定的宏,使它能够通过源码中的#ifdef进行检验
-g3 获得有关调试程序的详细信息
-S 要求编译程序生成来自源代码的汇编程序输出
-v 启动所有报警
-w 禁止所有报警
五:常见错误类型
1:syntex error,语法错误
2:can't find include file,头文件错误
3:ld:lm:No such file or directory,找不到所需的函数库
4:Undefined symbol未定义符号:源代码文件未被包含或编译。
1:最常用的方式
gcc hello.c -o hello
2:预处理后停止编译
gcc -E hello.c -o hello.i(.i通常为已经预处理过的C原始程序)
3:将hello.i编译为目标代码,可以使用-c参数来完成
gcc -c hello.i -o hello.o
也可以使用-x参数让gcc从指定的步骤开始.
4:将生成的目标文件链接成可执行文件
gcc hello.o -o hello
5:多个源文件时
gcc f1.c f2.c -o file
二:gcc参数的警告提示功能
1:-pedantic 使用了ANSI/ISO C语言扩展语法的地方将产生相应的警告信息
2:-Wall 产生尽可能多的警告信息,建议始终带上
3:-Werror 将所有的警告当成错误进行处理
三:库依赖
函数库实际上就是一些头文件和库文件的集合.
-I选项向gcc的头文件搜索路径中添加新的目录
-L选项向gcc的库文件搜索路径中添加新的目录
-l指定链接的库文件名,如 -ldavid 表示指示gcc去连接库文件libdavid.so
-static强制使用静态链接库
动态库文件(.so)和静态库文件(.a)的区别在于程序执行时所需的代码是运行时动态加载的,还是编译时静态加载的.gcc优先使用动态库
四:其他
-On 控制优化代码的生成,n是一个代表优先级别的整数;n取0~3;-O相当于-O1;
-O1 减小代码的长度和执行时间,一般包括线程跳转(Thread Jump)和延迟退栈(Deferred Stack Pops);
-O2 在O1基础上,进行一些额外调整,如处理器指令跳转;
-O3 在O2基础上,循环展开一些其他和处理器特性相关的优化工作;
-pipe:管道,它可以用来同时连接两个程序,其中一个程序的输出将直接作为另一个程序的输入,这样就可以避免使用临时文件,提高编译速度,但编译时消耗更多的内存.
-Dmacro 定义指定的宏,使它能够通过源码中的#ifdef进行检验
-g3 获得有关调试程序的详细信息
-S 要求编译程序生成来自源代码的汇编程序输出
-v 启动所有报警
-w 禁止所有报警
五:常见错误类型
1:syntex error,语法错误
2:can't find include file,头文件错误
3:ld:lm:No such file or directory,找不到所需的函数库
4:Undefined symbol未定义符号:源代码文件未被包含或编译。
gcc常用的编译选项对代码的影响
by alert7
2001-12-21
测试环境 redhat 6.2
★ 前言
本文讨论gcc的一些常用编译选项对代码的影响。当然代码变了,
它的内存布局也就会变了,随之exploit也就要做相应的变动。
gcc的编译选项实在太多,本文检了几个最常用的选项。
★ 演示程序
[alert7@redhat62 alert7]$ cat > test.c
#include <stdio.h>
void hi(void)
{
printf("hi");
}
int main(int argc, char *argv[])
{
hi();
return 0;
}
★ 一般情况
[alert7@redhat62 alert7]$ gcc -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11773 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483e4 <main>: push %ebp
0x80483e5 <main+1>: mov %esp,%ebp
0x80483e7 <main+3>: call 0x80483d0 <hi>
0x80483ec <main+8>: xor %eax,%eax
0x80483ee <main+10>: jmp 0x80483f0 <main+12>
0x80483f0 <main+12>: leave
0x80483f1 <main+13>: ret
....
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push %ebp
0x80483d1 <hi+1>: mov %esp,%ebp
0x80483d3 <hi+3>: push $0x8048450
0x80483d8 <hi+8>: call 0x8048308 <printf>
0x80483dd <hi+13>: add $0x4,%esp
0x80483e0 <hi+16>: leave
0x80483e1 <hi+17>: ret
0x80483e2 <hi+18>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|080483ec| hi()的返回地址
0xbffffb74 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb70 +--------+
|08048450| "hi"的地址
0xbffffb6c +--------+
| ...... |
(内存低址)
leave 指令所做的操作相当于MOV ESP,EBP 然后 POP EBP
ret 指令所做的操作相当于POP EIP
★ -O 编译选项
With `-O', the compiler tries to reduce code size and execution time.
When you specify `-O', the two options `-fthread-jumps' and
`-fdefer-pop' are turned on
优化,减少代码大小和执行的时间
[alert7@redhat62 alert7]$ gcc -O -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11757 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: push %ebp
0x80483d9 <main+1>: mov %esp,%ebp
0x80483db <main+3>: call 0x80483c8 <hi>
0x80483e0 <main+8>: xor %eax,%eax
0x80483e2 <main+10>: leave
0x80483e3 <main+11>: ret
0x80483e4 <main+12>: nop
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push %ebp
0x80483c9 <hi+1>: mov %esp,%ebp
0x80483cb <hi+3>: push $0x8048440
0x80483d0 <hi+8>: call 0x8048308 <printf>
0x80483d5 <hi+13>: leave
0x80483d6 <hi+14>: ret
0x80483d7 <hi+15>: nop
End of assembler dump.
在main()中,把一条jmp指令优化掉了,很显然,这条指令是可以不需要的。
在hi()中,把add $0x4,%esp优化掉了,这会不会使stack不平衡呢?
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|080483e0| hi()的返回地址
0xbffffb74 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb70 +--------+
|08048440| "hi"的地址
0xbffffb6c +--------+
| ...... |
(内存低址)
leave 指令所做的操作相当于把MOV ESP,EBP 然后 POP EBP
看到leave指令操作了没有,先把ebp-->esp,再pop ebp,这样即使
在过程内堆栈的esp,ebp是不平衡的,但只要返回时候碰到leave指令
就会平衡了,所以把add $0x4,%esp优化掉也是没有问题的。
★ -O2 编译选项
-O2 Optimize even more. Nearly all supported optimizations that do
not involve a space-speed tradeoff are performed. Loop unrolling
and function inlining are not done, for example. As compared to -O,
this option increases both compilation time and the performance of
the generated code.
[alert7@redhat62 alert7]$ gcc -O2 -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11757 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: push %ebp
0x80483d9 <main+1>: mov %esp,%ebp
0x80483db <main+3>: call 0x80483c8 <hi>
0x80483e0 <main+8>: xor %eax,%eax
0x80483e2 <main+10>: leave
0x80483e3 <main+11>: ret
...
0x80483ef <main+23>: nop
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push %ebp
0x80483c9 <hi+1>: mov %esp,%ebp
0x80483cb <hi+3>: push $0x8048440
0x80483d0 <hi+8>: call 0x8048308 <printf>
0x80483d5 <hi+13>: leave
0x80483d6 <hi+14>: ret
0x80483d7 <hi+15>: nop
End of assembler dump.
由于程序比较简单,再优化也没有好优化的了,所以跟-O出来的一样。
★ -fomit-frame-pointer 编译选项
-fomit-frame-pointer
Don't keep the frame pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore frame pointers; it also makes an extra
register available in many functions. It also makes
debugging impossible on most machines.
忽略帧指针。这样在程序就不需要保存,安装,和恢复ebp了。这样ebp也就是一个
free的register了,在函数中就可以随便使用了。
[alert7@redhat62 alert7]$ gcc -fomit-frame-pointer -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11773 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483e0 <main>: call 0x80483d0 <hi>
0x80483e5 <main+5>: xor %eax,%eax
0x80483e7 <main+7>: jmp 0x80483f0 <main+16>
0x80483e9 <main+9>: lea 0x0(%esi,1),%esi
0x80483f0 <main+16>: ret
....
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push $0x8048450
0x80483d5 <hi+5>: call 0x8048308 <printf>
0x80483da <hi+10>: add $0x4,%esp
0x80483dd <hi+13>: ret
0x80483de <hi+14>: mov %esi,%esi
End of assembler dump.
在main()和hi()中都去掉了以下指令
push %ebp
mov %esp,%ebp//这两条指令安装
leave//这条指令恢复
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+
|080483e5| hi()的返回地址
0xbffffb78 +--------+
|08048450| "hi"字符串的地址
0xbffffb74 +--------+
| ...... |
(内存低址)
没有保存上层执行环境的ebp.
★ -fomit-frame-pointer && -O2
-fomit-frame-pointer编译选项去掉了
push %ebp
mov %esp,%ebp//这两条指令安装
leave//这条指令恢复
-O2编译选项去掉了
add $0x4,%esp
两个加起来会不会这四条指令一起去掉,从而使stack不平衡呢?
[alert7@redhat62 alert7]$ gcc -fomit-frame-pointer -O2 -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11741 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: call 0x80483c8 <hi>
0x80483dd <main+5>: xor %eax,%eax
0x80483df <main+7>: ret
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push $0x8048430
0x80483cd <hi+5>: call 0x8048308 <printf>
0x80483d2 <hi+10>: add $0x4,%esp
0x80483d5 <hi+13>: ret
0x80483d6 <hi+14>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+
|080483dd| hi()的返回地址
0xbffffb78 +--------+
|08048430| "hi"字符串的地址
0xbffffb74 +--------+
| ...... |
(内存低址)
此时就没有把add $0x4,%esp优化掉,如果优化掉的话,整个stack就
会变的不平衡,从而会导致程序出错。
★ -fPIC 编译选项
-fPIC If supported for the target machine, emit position-independent
code, suitable for dynamic linking,even if branches need large
displacements.
产生位置无关代码(PIC),一般创建共享库时用到。
在x86上,PIC的代码的符号引用都是通过ebx进行操作的。
[alert7@redhat62 alert7]$ gcc -fPIC -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11805 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483f8 <main>: push %ebp
0x80483f9 <main+1>: mov %esp,%ebp
0x80483fb <main+3>: push %ebx
0x80483fc <main+4>: call 0x8048401 <main+9>
0x8048401 <main+9>: pop %ebx//取得该指令的地址
0x8048402 <main+10>: add $0x1093,%ebx//此时ebx里面存放着是GOT表的地址
0x8048408 <main+16>: call 0x80483d0 <hi>
0x804840d <main+21>: xor %eax,%eax
0x804840f <main+23>: jmp 0x8048411 <main+25>
0x8048411 <main+25>: mov 0xfffffffc(%ebp),%ebx
0x8048414 <main+28>: leave
0x8048415 <main+29>: ret
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push %ebp
0x80483d1 <hi+1>: mov %esp,%ebp
0x80483d3 <hi+3>: push %ebx
0x80483d4 <hi+4>: call 0x80483d9 <hi+9>
0x80483d9 <hi+9>: pop %ebx
0x80483da <hi+10>: add $0x10bb,%ebx
0x80483e0 <hi+16>: lea 0xffffefdc(%ebx),%edx
0x80483e6 <hi+22>: mov %edx,%eax
0x80483e8 <hi+24>: push %eax
0x80483e9 <hi+25>: call 0x8048308 <printf>
0x80483ee <hi+30>: add $0x4,%esp
0x80483f1 <hi+33>: mov 0xfffffffc(%ebp),%ebx
0x80483f4 <hi+36>: leave
0x80483f5 <hi+37>: ret
0x80483f6 <hi+38>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|401081ec| 保存的ebx
0xbffffb74 +--------+
|0804840d| (存放过call 0x8048401的下一条指令地址)
0xbffffb70 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb6c +--------+
|08049494| GOT表地址
0xbffffb68 +--------+
|08048470|(存放过call 0x80483d9的下一条指令地址)
0xbffffb64 +--------+
| ...... |
(内存低址)
★ -static 编译选项
-static
On systems that support dynamic linking, this prevents
linking with the shared libraries. On other systems,
this option has no effect.
把一些函数都静态的编译到程序中,而无需动态链接了。
[alert7@redhat62 alert7]$ gcc -o test -static test.c
[alert7@redhat62 alert7]$ wc -c test
962808 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80481b4 <main>: push %ebp
0x80481b5 <main+1>: mov %esp,%ebp
0x80481b7 <main+3>: call 0x80481a0 <hi>
0x80481bc <main+8>: xor %eax,%eax
0x80481be <main+10>: jmp 0x80481c0 <main+12>
0x80481c0 <main+12>: leave
0x80481c1 <main+13>: ret
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80481a0 <hi>: push %ebp
0x80481a1 <hi+1>: mov %esp,%ebp
0x80481a3 <hi+3>: push $0x8071528
0x80481a8 <hi+8>: call 0x804865c <printf>
0x80481ad <hi+13>: add $0x4,%esp
0x80481b0 <hi+16>: leave
0x80481b1 <hi+17>: ret
0x80481b2 <hi+18>: mov %esi,%esi
End of assembler dump.
[alert7@redhat62 alert7]$ ldd test
not a dynamic executable
-static出来的代码已经没有PLT了,GOT虽然有,已经全部为0了。
★ 小节
抛砖引玉般简单的实例描述了下gcc常用的编译选项对代码的影响。
不正之处,还请斧正。谢谢。
by alert7
2001-12-21
测试环境 redhat 6.2
★ 前言
本文讨论gcc的一些常用编译选项对代码的影响。当然代码变了,
它的内存布局也就会变了,随之exploit也就要做相应的变动。
gcc的编译选项实在太多,本文检了几个最常用的选项。
★ 演示程序
[alert7@redhat62 alert7]$ cat > test.c
#include <stdio.h>
void hi(void)
{
printf("hi");
}
int main(int argc, char *argv[])
{
hi();
return 0;
}
★ 一般情况
[alert7@redhat62 alert7]$ gcc -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11773 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483e4 <main>: push %ebp
0x80483e5 <main+1>: mov %esp,%ebp
0x80483e7 <main+3>: call 0x80483d0 <hi>
0x80483ec <main+8>: xor %eax,%eax
0x80483ee <main+10>: jmp 0x80483f0 <main+12>
0x80483f0 <main+12>: leave
0x80483f1 <main+13>: ret
....
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push %ebp
0x80483d1 <hi+1>: mov %esp,%ebp
0x80483d3 <hi+3>: push $0x8048450
0x80483d8 <hi+8>: call 0x8048308 <printf>
0x80483dd <hi+13>: add $0x4,%esp
0x80483e0 <hi+16>: leave
0x80483e1 <hi+17>: ret
0x80483e2 <hi+18>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|080483ec| hi()的返回地址
0xbffffb74 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb70 +--------+
|08048450| "hi"的地址
0xbffffb6c +--------+
| ...... |
(内存低址)
leave 指令所做的操作相当于MOV ESP,EBP 然后 POP EBP
ret 指令所做的操作相当于POP EIP
★ -O 编译选项
With `-O', the compiler tries to reduce code size and execution time.
When you specify `-O', the two options `-fthread-jumps' and
`-fdefer-pop' are turned on
优化,减少代码大小和执行的时间
[alert7@redhat62 alert7]$ gcc -O -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11757 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: push %ebp
0x80483d9 <main+1>: mov %esp,%ebp
0x80483db <main+3>: call 0x80483c8 <hi>
0x80483e0 <main+8>: xor %eax,%eax
0x80483e2 <main+10>: leave
0x80483e3 <main+11>: ret
0x80483e4 <main+12>: nop
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push %ebp
0x80483c9 <hi+1>: mov %esp,%ebp
0x80483cb <hi+3>: push $0x8048440
0x80483d0 <hi+8>: call 0x8048308 <printf>
0x80483d5 <hi+13>: leave
0x80483d6 <hi+14>: ret
0x80483d7 <hi+15>: nop
End of assembler dump.
在main()中,把一条jmp指令优化掉了,很显然,这条指令是可以不需要的。
在hi()中,把add $0x4,%esp优化掉了,这会不会使stack不平衡呢?
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|080483e0| hi()的返回地址
0xbffffb74 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb70 +--------+
|08048440| "hi"的地址
0xbffffb6c +--------+
| ...... |
(内存低址)
leave 指令所做的操作相当于把MOV ESP,EBP 然后 POP EBP
看到leave指令操作了没有,先把ebp-->esp,再pop ebp,这样即使
在过程内堆栈的esp,ebp是不平衡的,但只要返回时候碰到leave指令
就会平衡了,所以把add $0x4,%esp优化掉也是没有问题的。
★ -O2 编译选项
-O2 Optimize even more. Nearly all supported optimizations that do
not involve a space-speed tradeoff are performed. Loop unrolling
and function inlining are not done, for example. As compared to -O,
this option increases both compilation time and the performance of
the generated code.
[alert7@redhat62 alert7]$ gcc -O2 -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11757 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: push %ebp
0x80483d9 <main+1>: mov %esp,%ebp
0x80483db <main+3>: call 0x80483c8 <hi>
0x80483e0 <main+8>: xor %eax,%eax
0x80483e2 <main+10>: leave
0x80483e3 <main+11>: ret
...
0x80483ef <main+23>: nop
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push %ebp
0x80483c9 <hi+1>: mov %esp,%ebp
0x80483cb <hi+3>: push $0x8048440
0x80483d0 <hi+8>: call 0x8048308 <printf>
0x80483d5 <hi+13>: leave
0x80483d6 <hi+14>: ret
0x80483d7 <hi+15>: nop
End of assembler dump.
由于程序比较简单,再优化也没有好优化的了,所以跟-O出来的一样。
★ -fomit-frame-pointer 编译选项
-fomit-frame-pointer
Don't keep the frame pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore frame pointers; it also makes an extra
register available in many functions. It also makes
debugging impossible on most machines.
忽略帧指针。这样在程序就不需要保存,安装,和恢复ebp了。这样ebp也就是一个
free的register了,在函数中就可以随便使用了。
[alert7@redhat62 alert7]$ gcc -fomit-frame-pointer -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11773 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483e0 <main>: call 0x80483d0 <hi>
0x80483e5 <main+5>: xor %eax,%eax
0x80483e7 <main+7>: jmp 0x80483f0 <main+16>
0x80483e9 <main+9>: lea 0x0(%esi,1),%esi
0x80483f0 <main+16>: ret
....
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push $0x8048450
0x80483d5 <hi+5>: call 0x8048308 <printf>
0x80483da <hi+10>: add $0x4,%esp
0x80483dd <hi+13>: ret
0x80483de <hi+14>: mov %esi,%esi
End of assembler dump.
在main()和hi()中都去掉了以下指令
push %ebp
mov %esp,%ebp//这两条指令安装
leave//这条指令恢复
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+
|080483e5| hi()的返回地址
0xbffffb78 +--------+
|08048450| "hi"字符串的地址
0xbffffb74 +--------+
| ...... |
(内存低址)
没有保存上层执行环境的ebp.
★ -fomit-frame-pointer && -O2
-fomit-frame-pointer编译选项去掉了
push %ebp
mov %esp,%ebp//这两条指令安装
leave//这条指令恢复
-O2编译选项去掉了
add $0x4,%esp
两个加起来会不会这四条指令一起去掉,从而使stack不平衡呢?
[alert7@redhat62 alert7]$ gcc -fomit-frame-pointer -O2 -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11741 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483d8 <main>: call 0x80483c8 <hi>
0x80483dd <main+5>: xor %eax,%eax
0x80483df <main+7>: ret
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483c8 <hi>: push $0x8048430
0x80483cd <hi+5>: call 0x8048308 <printf>
0x80483d2 <hi+10>: add $0x4,%esp
0x80483d5 <hi+13>: ret
0x80483d6 <hi+14>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+
|080483dd| hi()的返回地址
0xbffffb78 +--------+
|08048430| "hi"字符串的地址
0xbffffb74 +--------+
| ...... |
(内存低址)
此时就没有把add $0x4,%esp优化掉,如果优化掉的话,整个stack就
会变的不平衡,从而会导致程序出错。
★ -fPIC 编译选项
-fPIC If supported for the target machine, emit position-independent
code, suitable for dynamic linking,even if branches need large
displacements.
产生位置无关代码(PIC),一般创建共享库时用到。
在x86上,PIC的代码的符号引用都是通过ebx进行操作的。
[alert7@redhat62 alert7]$ gcc -fPIC -o test test.c
[alert7@redhat62 alert7]$ wc -c test
11805 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80483f8 <main>: push %ebp
0x80483f9 <main+1>: mov %esp,%ebp
0x80483fb <main+3>: push %ebx
0x80483fc <main+4>: call 0x8048401 <main+9>
0x8048401 <main+9>: pop %ebx//取得该指令的地址
0x8048402 <main+10>: add $0x1093,%ebx//此时ebx里面存放着是GOT表的地址
0x8048408 <main+16>: call 0x80483d0 <hi>
0x804840d <main+21>: xor %eax,%eax
0x804840f <main+23>: jmp 0x8048411 <main+25>
0x8048411 <main+25>: mov 0xfffffffc(%ebp),%ebx
0x8048414 <main+28>: leave
0x8048415 <main+29>: ret
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80483d0 <hi>: push %ebp
0x80483d1 <hi+1>: mov %esp,%ebp
0x80483d3 <hi+3>: push %ebx
0x80483d4 <hi+4>: call 0x80483d9 <hi+9>
0x80483d9 <hi+9>: pop %ebx
0x80483da <hi+10>: add $0x10bb,%ebx
0x80483e0 <hi+16>: lea 0xffffefdc(%ebx),%edx
0x80483e6 <hi+22>: mov %edx,%eax
0x80483e8 <hi+24>: push %eax
0x80483e9 <hi+25>: call 0x8048308 <printf>
0x80483ee <hi+30>: add $0x4,%esp
0x80483f1 <hi+33>: mov 0xfffffffc(%ebp),%ebx
0x80483f4 <hi+36>: leave
0x80483f5 <hi+37>: ret
0x80483f6 <hi+38>: mov %esi,%esi
End of assembler dump.
来看看部分的内存映象
(内存高址)
+--------+
|bffffbc4| argv的地址(即argv[0]的地址)
0xbffffb84 +--------+
|00000001| argc的值
0xbffffb80 +--------+
|400309cb|main的返回地址
0xbffffb7c +--------+ <-- 调用main函数前的esp
|bffffb98| 调用main函数前的ebp
0xbffffb78 +--------+ <-- main函数的ebp
|401081ec| 保存的ebx
0xbffffb74 +--------+
|0804840d| (存放过call 0x8048401的下一条指令地址)
0xbffffb70 +--------+
|bffffb78| 调用hi()前的esp
0xbffffb6c +--------+
|08049494| GOT表地址
0xbffffb68 +--------+
|08048470|(存放过call 0x80483d9的下一条指令地址)
0xbffffb64 +--------+
| ...... |
(内存低址)
★ -static 编译选项
-static
On systems that support dynamic linking, this prevents
linking with the shared libraries. On other systems,
this option has no effect.
把一些函数都静态的编译到程序中,而无需动态链接了。
[alert7@redhat62 alert7]$ gcc -o test -static test.c
[alert7@redhat62 alert7]$ wc -c test
962808 test
[alert7@redhat62 alert7]$ gdb -q test
(gdb) disass main
Dump of assembler code for function main:
0x80481b4 <main>: push %ebp
0x80481b5 <main+1>: mov %esp,%ebp
0x80481b7 <main+3>: call 0x80481a0 <hi>
0x80481bc <main+8>: xor %eax,%eax
0x80481be <main+10>: jmp 0x80481c0 <main+12>
0x80481c0 <main+12>: leave
0x80481c1 <main+13>: ret
...
End of assembler dump.
(gdb) disass hi
Dump of assembler code for function hi:
0x80481a0 <hi>: push %ebp
0x80481a1 <hi+1>: mov %esp,%ebp
0x80481a3 <hi+3>: push $0x8071528
0x80481a8 <hi+8>: call 0x804865c <printf>
0x80481ad <hi+13>: add $0x4,%esp
0x80481b0 <hi+16>: leave
0x80481b1 <hi+17>: ret
0x80481b2 <hi+18>: mov %esi,%esi
End of assembler dump.
[alert7@redhat62 alert7]$ ldd test
not a dynamic executable
-static出来的代码已经没有PLT了,GOT虽然有,已经全部为0了。
★ 小节
抛砖引玉般简单的实例描述了下gcc常用的编译选项对代码的影响。
不正之处,还请斧正。谢谢。
文章来源:http://xfocus.org/