摘要: 本文概要本章主要描述了非负矩阵因式分解(Non-Negative Matrix Factorize)在数据挖掘中的作用。举了两个例子:1)文章主题分析(一些关键的词组);2)股票交易量分析(交易量与重大事件的关系)贝叶斯分类的局限贝叶斯分类时,需要训练数据集,这些数据集是人为划分的,并且不会出现新的分类。如果待处理的数据集的潜在分类很多,而且每一个分类需要一定量的样本才会准确,那么训练的工作量会非常大。所以,贝叶斯分类器适合分类比较少,每个分类样本较多的场景。层级聚类局限在于不太准确,可能导致一些不同类的样本却在一个聚类中。比如2个相关性并不大的文章A,B,但是由于必须要找出距离最近的文章组成 阅读全文
posted @ 2012-11-26 17:23 bourneli 阅读(364) 评论(0) 推荐(0) 编辑