【读书笔记】Data_Mining_with_R---Chapter_2_Predicting Algae Blooms

本书概要

《Data Mining with R》这本书通过实例,并结合R讲解数据挖掘技术。本书的核心理念就是“Learning it by doing”。本书分5章,第一章介绍R和MySql的基本知识,后面4章分别结合4个案例进行讲解。最精刚刚看完第二章,觉得还是学习了一些新的东西,在这里记录一下,作为备忘。

本章背景

藻类的过渡繁殖会破坏河流生态。希望找到一种办法对河流内的藻类生长情况进行预测。在生物化学领域,很容易测量河流中的化学物质,但是生物测量的成本很高,比如观察每立方米藻类数量,需要受过训练的人员测定,而且效率低。所以,希望找到一种方法通过河流中的化学元素预测藻类含量。同时还可以更好的了解哪些化学元素主要影响藻类的生长。

 

数据描述

数据可以从本书的R包(DMwR)中下载,该包可以通过下面的R命令直接安装:

> install.packages(“DMwR”)

加载库和本案例的数据可以用下面的代码

> library(“DMwR”)

> data(algae)

数据格式如下,主要有3个名词变量,描述观测季节,河流大小和河流速度;8个数值变量,分别记录8中不同化学物质的含量;需要预测7种藻类的含量。实验数据有200条记录,其中有些记录的部分数据有缺失。加载完数据后,可以用如下命令查看数据,

> head(algae)

虽然有7个变量需要预测,其实可以理解为对一个变量进行回归预测,然后复用到其他6个变量中,只是每个变量的模型可能不同。

 

数据可视化

验证正太分布

看看mxPH的值,有点类似正太分布,

plot(algae$mxPH,prob=T)

clip_image002

prob=T参数用于将纵坐标转成比例,那么就可以在这个图上直接绘制正态分布的概率函数了。

lines(density(algae$mxPH, na.rm=T))

clip_image004

看起来的确符合正太分布,但是这样还是不太有把握,好在可以使用car包中的qq-plot[1][2]图来观察符合的情况。

library(car)

qq.plot(algae$mxPH, main = ‘Normal QQ plot of maximum PH’)

clip_image006

如果mxPH符合正太分布,那么数据点应该落在实现上,虚线是95%的置信区间,也就是落在虚线内的点有95%可能属于正太分布。那么,从上述图中可以看出,除了较低的数据不在虚线范围内,大多数数据落在95%的置信区间的范围内,所以可以认为符合正太分布(用上述方法观察其他变量,可以发现基本上都不符合正太分布)。

 

分类绘图

使用lattce库(一个R的可视化包),可以将不同数据按照指定类型分类,然后绘制图形,如下所示,可以根据season变量,绘制不同的mxPH的直方图,

> algae$season <- factor(algae$season,levels = c('spring','summer','autumn','winter'))

> histogram(~mxPH | season, data = algae)

clip_image002[5]

lattce还可以绘制交叉属性图,

> histogram(~mxPH|season*size,algae)

clip_image004[5]

多为度散点图可以通过下面的命令

> stripplot(size ~ mxPH | speed, data = algae, jitter = T,pch = 19)

clip_image006[6]

jitter参数用于添加轻微的颤抖,避免数据重合。

 

NA数据处理

原始数据不可避免的会有NA(Not Avaliable)数据,处理NA数据有一下几个基本原则:

1. 去掉带有NA数据的记录

2. 通过变量(列)之间的关系,计算NA数据

3. 通过记录(行)之间的关系,计算NA数据,如KNN

4. 使用可以处理NA数据的模型(有些模型可以容忍NA,有些不能)

统计方法填充NA

符合正太分布的数据如(mxPH),可以使用平均值来填补NA数据,因为这些数据都均匀的分布在平均值左右。但是如何是倾斜太大(如OP4)或是有异类值(非常大的值),采用中位数更好,因为此时平均值已经不能很好的描述总体了。

变量关联填充NA

如果变量之间存在一定的关联,那么可以通过此联系计算出NA值。R中提供了一个很方便的函数cor查看所有变量之间的相关系数[3],如下:

> symnum(cor(algae[,4:18],use = “complete.obs”))

生成如下数据

clip_image002[7]

可以看到,“*”表示两个变量的相关度达到0.9(相关度处于-1到1之间,绝对值越大,越相关),use = “complete.obs”类似na.rm = T。从领域专家那里,也可以得知oPO4和PO4的含量是相关的。接下来就可以使用线性回归[4]计算缺失值。

相似性填充NA

如果变量之间没有显著的相似性,那么上述方法没有多大作用。这时可以使用记录之间的相似性填充NA,一般使用KNN[5](K Nearest Neighbor)。R中的impitation和impute两个包具有类似函数,DMwR包中也提供类似函数knnImputation。

多元线性回归

线性回归模型无法接受NA数据,所以需要先用前面将的方法填充NA。线性模型可以使用lm函数获得,这里略去。接下来讨论一下如何评估模型的好坏。

clip_image004[7]

一般会看每个计算出来的系数的假设检验结果。lm计算出的结果会对每个参数计算假设检验,原始假设:H0: β=0。检测结果是Pr(>|t|)这一类对应的值(采用t分布测试,变量是系数与标准差的比例)。一般来讲,0.1以下拒绝原始假设,接受系数不为0。

方差分析可以用来判断变量的重要性,可以通过一步一步的去掉不重要的变量来逐步找到最有效的模型,

clip_image006[8]

上面的方差分析可以看出season的作用最弱,所以可以去掉,采用下面的命令

> lm2.a1 <- update(lm.a1, .~.-season)

> lm2.a1

clip_image008

已经没有season变量了。这样,一步一步的裁剪掉不重要的变量,得到最后的线性模型。但是,R也提供一个便捷的方法,一次性完成上面的操作,如下:

> final.lm <- step(lm.a1)

线性模型有个最直观的判别方法就是R-Squared参数(介于0到1之间),有点类是变量的相关性,但考虑的所有变量。一般来讲,如果这个值小于0.5,说明线性模型不适合这个问题。

rpart决策树

决策树计算回归时,纯度是用deviance(节点内每个记录值与均值的差的平方和)描述。这个值越小,说明越纯。

控制树的创建结束有三个参数

1. cp,当前节点deviance与两个子节点deviance之和的差的比例,如果分裂前后deviance之差越大,那么说明切分的越好

2. minsplit,分裂后节点的小于此阀值后就不再分裂

3. maxdepth,书的最大深度

rpart包提供printcp,用于辅助评估最佳的切分cp,可以看看输出结果:

clip_image010

rpart函数在构建树时尝试用不同的cp值构建的不同大小的数(nsplit),并用K Folder交叉检验评估了不同树的相对错误率(xerror)和方差(xstd)。可以直接通过最小xerror来选择最优树,这里选择3号。也可以使用X-SE的方法,这里定X=1,也就是1-SE(1个标准差)。那么3号树的1-SE = 0.67019+0.11215 = 0.784037,选择xerror比这个值小且具有最少分割点的树,也就是2号树(nsplit = 1),作为最终的树,最后,用下面的命令给树截肢:

> rt2.a1 <- prunt(rt.a1, cp = 0.072)

得到的树如下:

clip_image012

进一步阅读:

1. Beriman et al. 1984 决策树鼻祖,主要使用统计方法,此书目前还没有找到资料。

2. C4.5 by Quinlan (1993),主要从机器学习领域描述分类决策树,C5.0已经运用于商业领域,CSDN上可以下载到。

3. 作者的博士论文 “Torgo 1999a”,google这个关键字可以找到在线资料

 

模型评估和选取

回归树评估可以使用下面几个指标

MAE  mean absolute error,预测值与真实值差的绝对值的均值

NMAE normalized mean absoulate error, 计算方法:MAE /平均值与真实值差的绝对值的均值

MSE  mean squared error,预测值与真实值差的平方的均值。

NMSE normalized mean squared error,计算方法:MSE / 平均值与真实值差的平方的均值

(上面的值越小越好,大于等于1说明预测的结果还不如直接用均值预测!)

本节中的k-fold框架以后可以直接拿来复用,很方便。可以使用不同参数和模型的组合,并且为每个组合进行n次k-fold交叉测试(n和k都可以设置)。作者还实现了一个配套的plot函数,可以用箱盒图直观的查看不同组合的评估结果。

参考

[1] QQ-plot Wiki: http://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

[2] QQ-plot百度百科:http://baike.baidu.com/view/8040278.htm

[3] Wiki: 相关系数http://zh.wikipedia.org/wiki/%E7%9B%B8%E5%85%B3

[4] Wiki:线性回归 http://en.wikipedia.org/wiki/Linear_regression

[5] 互动百科KNN http://www.baike.com/wiki/KNN

posted @ 2013-08-06 20:23  bourneli  阅读(5478)  评论(2编辑  收藏  举报