Kafka 之producer拦截器(interceptor)
Kafka 之producer拦截器(interceptor)
一、拦截器原理
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
(1)configure(configs)
获取配置信息和初始化数据时调用。
(2)onSend(ProducerRecord):
该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算
(3)onAcknowledgement(RecordMetadata, Exception):
该方法会在消息被应答或消息发送失败时调用,并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率
(4)close:
关闭interceptor,主要用于执行一些资源清理工作
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
二、拦截器案例
1)需求:
实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。
2)案例实操
(1)增加时间戳拦截器
package com.libt.kafka.interceptor; import java.util.Map; import org.apache.kafka.clients.producer.ProducerInterceptor; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.clients.producer.RecordMetadata; public class TimeInterceptor implements ProducerInterceptor<String, String> { @Override public void configure(Map<String, ?> configs) { } @Override public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) { // 创建一个新的record,把时间戳写入消息体的最前部 return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(), System.currentTimeMillis() + "," + record.value().toString()); } @Override public void onAcknowledgement(RecordMetadata metadata, Exception exception) { } @Override public void close() { } }
(2)统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器
package com.libt.kafka.interceptor; import java.util.Map; import org.apache.kafka.clients.producer.ProducerInterceptor; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.clients.producer.RecordMetadata; public class CounterInterceptor implements ProducerInterceptor<String, String>{ private int errorCounter = 0; private int successCounter = 0; @Override public void configure(Map<String, ?> configs) { } @Override public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) { return record; } @Override public void onAcknowledgement(RecordMetadata metadata, Exception exception) { // 统计成功和失败的次数 if (exception == null) { successCounter++; } else { errorCounter++; } } @Override public void close() { // 保存结果 System.out.println("Successful sent: " + successCounter); System.out.println("Failed sent: " + errorCounter); } }
(3)producer主程序
package com.libt.kafka.interceptor; import java.util.ArrayList; import java.util.List; import java.util.Properties; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; public class InterceptorProducer { public static void main(String[] args) throws Exception { // 1 设置配置信息 Properties props = new Properties(); props.put("bootstrap.servers", "hadoop1:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 2 构建拦截链 List<String> interceptors = new ArrayList<>(); interceptors.add("com.atguigu.kafka.interceptor.TimeInterceptor"); interceptors.add("com.atguigu.kafka.interceptor.CounterInterceptor"); props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors); String topic = "first"; Producer<String, String> producer = new KafkaProducer<>(props); // 3 发送消息 for (int i = 0; i < 10; i++) { ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i); producer.send(record); } // 4 一定要关闭producer,这样才会调用interceptor的close方法 producer.close(); } }
3)测试
(1)在kafka上启动消费者,然后运行客户端java程序。
[hadoop1 kafka]$ bin/kafka-console-consumer.sh \ --zookeeper hadoop1:2181 --from-beginning --topic first 1501904047034,message0 1501904047225,message1 1501904047230,message2 1501904047234,message3 1501904047236,message4 1501904047240,message5 1501904047243,message6 1501904047246,message7 1501904047249,message8 1501904047252,message9
(2)观察java平台控制台输出数据如下:
Successful sent: 10
Failed sent: 0