Leetcode Google VIP Plus Dynamic Programming Medium Problems
Leetcode Google VIP Plus Dynamic Programming Medium Problems
276 Paint Fence
Question: You are painting a fence of n posts with k different colors.You must paint the posts following these rules:
- Every post must be painted exactly one color
- At most one pair of adjacent fence posts can have the sanme color
Given the two integers n and k,return the number of ways you can paint the fence.
class Solution {
public int numWays(int n, int k) {
if(k == 1 && n > 2) return 0;
if(k == 1) return 1;
if(n==1) return k;
// dp 动态规划
/**
record[i] 记录的是到第i个栅栏的时候,倒数两个是重复元素的栅栏涂色的个数
record[0] = 0;
record[1] = k; // 例如k=3 11 22 33
record[i] = dp[i-1] - record[i-1]
record[i] = 前i-1个栅栏涂完色之后的所有的情况 - 前i-1个栅栏涂完色之后倒数两个是重复元素的栅栏涂色的个数
for example:
k = 3,i=3
11,12,13,21,22,23,31,32,33当算record[2]的时候,record[1] = 3,也就是11,22,33,当对下一个栅栏进行涂色的时候,
这3种状态一定不会产生后两个是相同颜色的可能了,只有剩下的dp[i-1] - record[i-1]才有可能产生,也就是12,13,21,23,31,32
这6中情况可以产生倒数两个是重复元素的栅栏涂色,122,133,211,233,311,322.
状态定义 dp[i] : 表示到第i个栅栏的时候的可能的方案数
状态转移方程 : dp[i] = (dp[i-1] - record[i-1])*k + (record[i-1])*(k-1)
解释:当前栅栏涂完色之后的可能涂色方案数目 = (前一个栅栏涂完色的方案数目 - 前一个栅栏涂完色之后的record)* k + 前一个栅栏涂完色之后的record *(k-1) k-1表示不能涂和前一个栅栏相同的颜色了,从剩下的k-1中颜色随机挑选一个进行涂色
初始状态:dp[0] = k; dp[1] = k*k;
*/
int[] dp = new int[n];
int[] record = new int[n];
record[0] = 0;
record[1] = k;
dp[0] = k;
dp[1] = k*k;
for(int i = 2;i < n;i++){
dp[i] = (dp[i-1] - record[i-1])*k + (record[i-1])*(k-1);
record[i] = dp[i-1] - record[i-1];
}
return dp[n-1];
}
}
351 Android Unlock Patterns
Question
Android devices have a special lock screen with a 3 x 3 grid of dots. Users can set an "unlock pattern" by connecting the dots in a specific sequence, forming a series of joined line segments where each segment's endpoints are two consecutive dots in the sequence. A sequence of k dots is a valid unlock pattern if both of the following are true:
- All the dots in the sequence are distinct.
- If the line segment connecting two consecutive dots in the sequence passes through any other dot, the other dot must have previously appeared in the sequence. No jumps through non-selected dots are allowed.
class Solution {
public int numberOfPatterns(int m, int n) {
int [][]skip = new int[10][10];
//这个skip数组是为了记录跳跃的点数,比如说从1到3,就跳跃2
//而且因为是对称的操作,所以3到1也是如此
skip[1][3] = skip[3][1] = 2;
skip[1][7] = skip[7][1] = 4;
skip[3][9] = skip[9][3] = 6;
skip[4][6] = skip[6][4] = skip[2][8] = skip[8][2] = 5;
skip[1][9] = skip[9][1] = skip[3][7] = skip[7][3] = 5;
skip[7][9] = skip[9][7] = 8;
int result = 0;
boolean []visited = new boolean[10];
//深度遍历,遍历每一个点到点的次数
for(int i = m; i<=n; i++){
//因为从1,3,7,9出发都是对称的,为什么i要减一呢,因为我们是从1出发,先天少了一个节点
result += DFS(1,visited,skip,i-1)*4;
//2,4,6,8对称
result += DFS(2,visited,skip,i-1)*4;
//唯独5独立
result += DFS(5,visited,skip,i-1);
}
return result;
}
//深度遍历
public int DFS(int current, boolean []visited, int [][]skip,int remainKeyCount){
if(remainKeyCount == 0){
return 1;
}
int result = 0;
//深度遍历
visited[current] = true;
for(int i = 1; i <= 9; i++){
//看当前的节点到i节点的路径中有没有其他节点在中间
int crossThroughNumber = skip[current][i];
//如果这一次我们的i节点没有被读过,那么就判断有没有路过中间节点(visited[crossThroughNumber])或者这两个节点相邻没有中间节点(currentThrough=0)
if(!visited[i] && (crossThroughNumber == 0 ||visited[crossThroughNumber])){
result += DFS(i,visited,skip,remainKeyCount-1);
}
}
//渣男行径开始了
visited[current] = false;
return result;
}
}
361 Bomb Enemy
Question
Given an m x n matrix grid where each cell is either a wall 'W', an enemy 'E' or empty '0', return the maximum enemies you can kill using one bomb. You can only place the bomb in an empty cell.
The bomb kills all the enemies in the same row and column from the planted point until it hits the wall since it is too strong to be destroyed.
class Solution {
int[][] f1, f2, f3, f4;
public int maxKilledEnemies(char[][] grid){
int r = grid.length;
if(r == 0) return 0;
int c = grid[0].length;
if(c == 0) return 0;
f1 = new int[r + 2][c + 2]; f2 = new int[r + 2][c + 2];
f3 = new int[r + 2][c + 2]; f4 = new int[r + 2][c + 2];
for(int i = 1; i <= r; i++){
for(int j = 1; j <= c; j++){
f1[i][j] = f1[i][j - 1];
if(grid[i - 1][j - 1] == 'E') f1[i][j]++;
else if(grid[i - 1][j - 1] == 'W') f1[i][j] = 0;
}
for(int j = c; j >= 1; j--){
f2[i][j] = f2[i][j + 1];
if(grid[i - 1][j - 1] == 'E') f2[i][j]++;
else if(grid[i - 1][j - 1] == 'W') f2[i][j] = 0;
}
}
int ans = 0;
for(int j = 1; j <= c; j++){
for(int i = 1; i <= r; i++){
f3[i][j] = f3[i - 1][j];
if(grid[i - 1][j - 1] == 'E') f3[i][j]++;
else if(grid[i - 1][j - 1] == 'W') f3[i][j] = 0;
}
for(int i = r; i >= 1; i--){
f4[i][j] = f4[i + 1][j];
if(grid[i - 1][j - 1] == 'E') f4[i][j]++;
else if(grid[i - 1][j - 1] == 'W') f4[i][j] = 0;
if(grid[i - 1][j - 1] == '0'){
ans = Math.max(ans, f1[i][j] + f2[i][j] + f3[i][j] + f4[i][j]);
}
}
}
return ans;
}
}
418 Sentence Screen Fitting
Question
Given a rows x cols screen and a sentence represented as a list of strings,return the number of times the given sentence can be fitted on the screen.
The order of words in the sentence must remain unchanged, and a word cannot be split into two lines. A single space must separate two consecutive words in a line.
class Solution {
public int wordsTyping(String[] sentence, int rows, int cols) {
int senLen = sentence.length;
int result = 0;
// 每行剩余的容量,初始值为列数
int rowLeft = cols;
// 数组中的第几个单词
int wordIndex = 0;
int rowIndex = 0;
while (rowIndex < rows) {
int worldLength = sentence[wordIndex].length();
// 一行可以放下就继续放
if (rowLeft >= worldLength) {
rowLeft = rowLeft - worldLength;
// 空格
rowLeft--;
wordIndex++;
// 放完一个句子重新开始
if (wordIndex == senLen) {
result++;
wordIndex = 0;
}
}
// 一行放不下就换行
else {
rowIndex++;
rowLeft = cols;
}
}
return result;
}
}
651 4 Keys Keyboard
Question
Imagine you have a special keyboard with the following keys:
Key 1 : (A) : Print one 'A' on screen
Key 2 : (Ctrl-A) : Select the whole screen
Key 3 :(Ctrl-C) : Copyselection to buffer.
Key 4 :(Ctrl-V) : Print buffer on screen appending it after what has already been printed.
Now , you can only press the keyboard for N times (with the above four keys),find out maximum numbers of 'A' you can print on screen.
贪心:最后一步,要么是A,要么是Ctrl-V
State:
dp[i]表示到第i次操作,屏幕上能显示A的最大个数
Function:
dp[i] = Math.max(dp[i-1] + 1,dp[i - j - 1])
假设从第j步执行Ctrl-A,第j+1步执行Ctrl-C,那么剩下的i-(j+1)步执行Ctrl-V 所以dp[i] = max(dp[j] * (i-j-1))
Initial State:
dp[i] = i;
class Solution{
public int maxA(int n){
int[] dp = new int[n+1];
for(int i = 1;i<=n;i++){
dp[i] = dp[i-1]+1;
for(int j = 2;j+2<i;j++){
dp[i] = Math.max(dp[i],dp[j]*(i-j+1));
}
}
return dp[n];
}
}
1055 Shortest Way to Form String
Question:
From any string , we can form a subsequence of that string by deleting some number of characters (possibly no deletions)
Given two strings source and target.return the minimum number of subsequences of source such that their concatenation equals target.if the task is impossible , return -1;
class Solution{
public int shortestWay(String source,String target){
int res = 0;
int s = 0;
int t = 0;
while(t<target.length()){
if(source.indexOf(target.charAt(t)) == -1){
return -1;
}
if(source.charAt(s) == target.charAt(t)){
s++;
t++;
}else{
s++;
}
if(s>=source.length()){
res++;
s=0;
}
}
if(t>=target.length() && s!=0) res++;
return res;
}
}
1066 Campus Bikes II
Question
On a campus represented as a 2D grid, there are N workers and M bikes, with N <= M. Each worker and bike is a 2D coordinate on this grid.
We assign one unique bike to each worker so that the sum of the Manhattan distances between each worker and their assigned bike is minimized.
The Manhattan distance between two points p1 and p2 is Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|.
Return the minimum possible sum of Manhattan distances between each worker and their assigned bike.
class Solution {
int minDistance = Integer.MAX_VALUE;
public int assignBikes(int[][] workers, int[][] bikes) {
return helper(workers, bikes, new int[bikes.length], 0);
}
/**
*
* @param workers
* @param bikes
* @param visited 代表访问过的自行车
* @param index 代表当前遍历到的工人
* @return
*/
public int helper(int[][] workers, int[][] bikes, int[] visited, int index) {
if (index == workers.length) {
return 0;
}
for (int i = 0; i < bikes.length; i++) {
if (visited[i] == 0) {
int distance = Manhattan(workers[index][0], workers[index][1], bikes[i][0], bikes[i][1]);
visited[i] = 1;
minDistance = Math.min(minDistance, distance + helper(workers, bikes, visited, index + 1));
visited[i] = 0;
}
}
return minDistance;
}
public int Manhattan(int x1, int y1, int x2, int y2) {
return Math.abs(x1 - x2) + Math.abs(y1 - y2);
}
}
1136 Parallel Courses
Question
You are given an integer n which indicates that we have n courses, labeled from 1 to n. You are also given an array relations where relations[i] = [a, b], representing a prerequisite relationship between course a and course b: course a has to be studied before course b.
In one semester, you can study any number of courses as long as you have studied all the prerequisites for the course you are studying.
Return the minimum number of semesters needed to study all courses. If there is no way to study all the courses, return -1.
class Solution {
public int minimumSemesters(int N, int[][] relations) {
int[] degree = new int[N + 1];
//构建图的数据结构,给定课程的关系,有后继课程的其入度+1
Map<Integer, List<Integer>> graph = new HashMap<>();
for (int[] r : relations) {
int a = r[0];
int b = r[1];
//b是a的后继课程,所以入度+1
degree[b]++;
//a课程是否存在,不存在就给它新建一个
if (graph.containsKey(a)) {
graph.get(a).add(b);
} else {
List<Integer> list = new LinkedList<>();
list.add(b);
graph.put(a, list);
}
}
// 新学期要上的课程,就是入度为0的课程放进去
List<Integer> nowCourse = new LinkedList<>();
for (int i = 1; i < degree.length; i++) {
if (degree[i] == 0) {
nowCourse.add(i);
}
}
//最小学期数
int mini = 0;
// 开始上课,开学了
while (!nowCourse.isEmpty()) {
// 每次新学期开始前,要新建下一学期的nextCourse
List<Integer> nextCourse = new LinkedList<>();
// 遍历要上的课
for (int c : nowCourse) {
// 如果在总的课程安排里面,它的后继课程不为空
if (graph.get(c) != null) {
// 不为空,就获得它的全部后继课程,赋值给y
List<Integer> y = graph.get(c);
// 然后遍历y,并入度-1,并统计有没有0,加入到下学期课中
for (Integer a : y) {
degree[a]--;
if (degree[a] == 0) {
nextCourse.add(a);
}
}
}
}
// 学期结束
mini++;
// 下学期的课给到新学期,开始新的学期
nowCourse = nextCourse;
}
// 统计入度是否不为0的,有则存在环,返回-1
for (int i = 1; i < degree.length; i++) {
if (degree[i] > 0) {
return -1;
}
}
return mini;
}
}
256 Paint House
Question
There is a row of n houses, where each house can be painted one of three colors: red, blue, or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by an n x 3 cost matrix costs.
\(dp[i][j]\): 表示粉刷完第i个房子用第j种颜色的最小花费
class Solution {
public int minCost(int[][] costs) {
int n = costs.length;
if (n == 0) return 0;
int[][] dp = new int[n][3];
dp[0][0] = costs[0][0];
dp[0][1] = costs[0][1];
dp[0][2] = costs[0][2];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];
dp[i][1] = Math.min(dp[i - 1][2], dp[i - 1][0]) + costs[i][1];
dp[i][2] = Math.min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];
}
return Math.min(Math.min(dp[n - 1][0], dp[n - 1][1]), dp[n - 1][2]);
}
}
750 Number Of Corner Rectangles
Question
Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
class Solution {
public int countCornerRectangles(int[][] grid) {
int rows = grid.length;
int cols = grid[0].length;
// border[i][j] 表示从不包含当前行的前面所有行中,列的 i 索引和 j 索引都为 1 的行的个数
int[][] border = new int[rows + 1][cols + 1];
int ans = 0; // 总共角矩形的个数
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (grid[i][j] == 1) {
for (int k = j + 1; k < cols; k++) {
if (grid[i][k] == 1) { // 找到了角矩形的一个底边
ans += border[j][k];
// 第 0 行到第 i 行的每一行中,列索引 j 和 k 都为 1 的行的个数加一
border[j][k]++;
}
}
}
}
}
return ans;
}
}
1273 Delete Tree Nodes
Question:
A tree rooted at node 0 is given as follows
- The number of nodes is nodes;
- The value of the i-th node is value[i]
- The parent of the i-th node is parent[i]
Remove every subtree whose sum of values of nodes is zero;
After doing that , return the number of nodes remaining in the tree.
class Solution{
static class TreeNode{
int value;
int sum = null;
int num = null;
List<TreeNode> children;
public TreeNode(){
this.children = new ArrayList<TreeNode>();
}
public TreeNode(int value){
this.value = value;
this.children = new ArrayList<TreeNode>();
}
public void addTreeNode(TreeNode node){
this.children.add(node);
}
}
public int deleteTreeNodes(int nodes,int[] parent,int[] value){
TreeNode root = null;
TreeNode[] treeArr = new TreeNode[nodes];
for(int i = 0;i<nodes;i++){
treeArr[i] = new TreeNode(value[i]);
if(parent[i] == -1) root = treeArr[i];
}
for(int i = 0;i< nodes;i++){
if(parents[i] != -1){
treeArr[parents[i]].addTreeNode(TreeArr[i]);
}
}
computeTree(root);
if(root.sum == 0) return 0;
return nodes - removeZeroTreeNode(root);
}
public void computeTree(TreeNode node){
node.sum = node.value;
node.num = 1;
for(TreeNode child:node.children){
computeTree(child);
node.sum+=child.sum;
node.num+=child.num;
}
}
public int removeZeroTreeNode(TreeNode node){
int removeNum = 0;
for(int i = 0;i< node.children.size();i++){
TreeNode child = node.children.get(i);
if(child.sum == 0){
removeNum += child.num;
}else{
removeNum += removeZeroTreeNode(child);
}
}
return removeNum;
}
}
1230 Toss Strange Coins
Question:
You have some coins.The i-th coin has a probability prob[i] of facing heads when tossed.
Return the probability that the number of coins facing heads equals target . if you toss every coin exactly once.
State:
$dp[i][j] $:i个硬币投出j个正片朝上的概率值
Function:
用i个硬币投出j个正面朝上的概率取决于用i-1个硬币投出多少个正面朝上的概率。
如果i-1个硬币投出了j-1个正面朝上,那么第i个硬币一定要投出正面朝上。
如果i-1个硬币已经投出了j个正面朝上,那么第i个硬币就要投出反面朝上。
\(dp[i][j] = dp[i-1][j] * (1-prob[i] + dp[i-1][j-1] * prob[i])\)
Initial State:
\(dp[i][0] = dp[i-1][0] * (1-prob[i-1])\).
class Solution{
public double probabilityOfHeads(double[] prob,int target){
int n = prob.length;
double[][] dp = new double[n+1][target+1];
dp[0][0] = 1;
for(int i = 1;i<=n;i++) dp[i][0] = dp[i-1][0] * (1-prob[i-1]);
for(int i = 1;i<=n;i++){
for(int j = 1;j<=target;j++){
dp[i][j] = dp[i-1][j-1] * prob[i-1] + dp[i-1][j] * (1 - prob[i-1]);
}
}
return dp[n][target];
}
}