这里使用的环境和上一篇的一样。上一篇的Mapreduce是在本地执行任务,在http://192.168.1.2:8088/cluster  在如下图中是看不到job的提交,本篇将指导你怎么在windows中提交job到远程linux上面。意思在一般开发的时候,我们可以在window上做开发,在linux上执行任务。

1、在这个开发中会遇到以下错误:

报如下错,看日志 hadoop安装目录下的logs 中的userlogs日志

需要修改YARNRunner类,重写YARNRunner类。在这里使用所有都是2.7.3jar包,由于本地系统是windows ,发布到的是linux 做以下改变:

把方法代码放到YARNRunner末尾

private void replaceEnvironment(Map<String, String> environment) {
      String tmpClassPath = environment.get("CLASSPATH");
      tmpClassPath=tmpClassPath.replaceAll(";", ":");
      tmpClassPath=tmpClassPath.replaceAll("%PWD%", "\\$PWD");
      tmpClassPath=tmpClassPath.replaceAll("%HADOOP_MAPRED_HOME%", "\\$HADOOP_MAPRED_HOME");
      tmpClassPath= tmpClassPath.replaceAll("\\\\", "/" );
      environment.put("CLASSPATH",tmpClassPath);
}

2、在376行左右,把代码

 vargs.add(MRApps.crossPlatformifyMREnv(jobConf, Environment.JAVA_HOME)
+ "/bin/java");

改成
vargs.add("$JAVA_HOME/bin/java");

3、

在以上代码的上一行添加replaceEnvironment(environment); //后来添加
// Setup ContainerLaunchContext for AM container
ContainerLaunchContext amContainer =
ContainerLaunchContext.newInstance(localResources, environment,
vargsFinal, null, securityTokens, acls);

 

4、接下来是拷贝hadoop的配置文件到resource目录下

core-site.xml

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/hadoop/hadoop/tmp/</value>
        <description> Abase for other temporary directories</description>
        
    </property>

    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://namenode:9000</value>
    </property>
    <property>
        <name>io.file.buffer.size</name>
        <value>4096</value>
    </property>
</configuration>

hdfs-site.xml

<configuration>
    <property>
        <name>dfs.nameservices</name>
        <value>namenode</value>
    </property>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>namenode:50090</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/usr/hadoop/hadoop/dfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
</configuration>

maperd-site.xml

<configuration>

    <property>
    <name>mapreduce.application.classpath</name>
    <value>
        /usr/hadoop/opt/hadoop/etc/hadoop,
        /usr/hadoop/opt/hadoop/share/hadoop/common/*,
        /usr/hadoop/opt/hadoop/share/hadoop/common/lib/*,
       /usr/hadoop/opt/hadoop/share/hadoop/hdfs/*,
        /usr/hadoop/opt/hadoop/share/hadoop/hdfs/lib/*,
        /usr/hadoop/opt/hadoop/share/hadoop/mapreduce/*,
        /usr/hadoop/opt/hadoop/share/hadoop/mapreduce/lib/*,
        /usr/hadoop/opt/hadoop/share/hadoop/yarn/*,
        /usr/hadoop/opt/hadoop/share/hadoop/yarn/lib/*
    </value>
</property>    
  <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobtracker.http.address</name>
        <value>namenode:50030</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>namenode:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>namenode:19888</value>
    </property>
    <property> 
        <!--see job-->
        <name>mapred.job.tracker</name>
        <value>namenode:9001</value>
    </property>

</configuration>

yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <!-- <property>

    <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>

    <value>org.apache.hadoop.mapred.ShuffleHandler</value>

 </property> -->
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>namenode:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>namenode:8030</value>
    </property>
    <property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>namenode:8031</value>
</property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>namenode:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.web.address</name>
        <value>namenode:8088</value>
    </property>
<property>
    <name>yarn.application.classpath</name>
    <value>
        /usr/hadoop/opt/hadoop/etc/hadoop,
         /usr/hadoop/opt/hadoop/share/hadoop/common/*,
         /usr/hadoop/opt/hadoop/share/hadoop/common/lib/*,
         /usr/hadoop/opt/hadoop/share/hadoop/hdfs/*,
        /usr/hadoop/opt/hadoop/share/hadoop/hdfs/lib/*,
         /usr/hadoop/opt/hadoop/share/hadoop/mapreduce/*,
         /usr/hadoop/opt/hadoop/share/hadoop/mapreduce/lib/*,
        /usr/hadoop/opt/hadoop/share/hadoop/yarn/*,
         /usr/hadoop/opt/hadoop/share/hadoop/yarn/lib/*
    </value>
  </property>
  
</configuration>

上述xml文件引入都lib 都是linux上面的jar目录,因为最终需要打包成jar的形式在linux上面运行

pom.xml 相对上一篇文章中多引入了几个包,对比看一下就知道了

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>HadoopJar</groupId>
  <artifactId>Hadoop</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  <name>Hadoop</name>
  <dependencies>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-common</artifactId>
    <version>2.7.3</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-core</artifactId>
    <version>2.7.3</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-hdfs</artifactId>
    <version>2.7.3</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-common -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-common</artifactId>
    <version>2.7.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-jobclient -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
    <version>2.7.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-app -->
<!-- <dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-app</artifactId>
    <version>2.7.3</version>
</dependency> -->

<dependency>
    <groupId>jdk.tools</groupId>
    <artifactId>jdk.tools</artifactId>
    <version>1.8</version>
    <scope>system</scope>
    <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
  </dependencies>
  <build>
        <finalName>Hadoop</finalName>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>  
                <groupId>org.apache.maven.plugins</groupId>  
                <artifactId>maven-resources-plugin</artifactId>  
                <configuration>  
                    <encoding>UTF-8</encoding>  
                </configuration>  
            </plugin>  
        </plugins>
    </build>
</project>

 

 接下来java类和上一篇的差不多,这里需要多添加一行代码到Wcount.java 中

conf.set("mapred.jar", "D:\\workspace\\Hadoop\\target\\Hadoop.jar");

 

这个包Hadoop.jar是由maven打包而来,注意这里在打包的时候先把这一行注释掉再打包,如果不添加这一行就会报如下错误:

报如下错:java.lang.RuntimeException: java.lang.ClassNotFoundException: org.conan.myhadoop.mr.WordCount$WordCountMapper at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:857) at org.apache.hadoop.mapreduce.JobContext.getMapperClass(JobContext.java:199) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:718) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364) at org.apache.hadoop.mapred.Child$4.run(Child.java:255) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190) at org.apache.hadoop.mapred.Child.main(Child.java:249)
,至此上述讲解完了发布job到linux集群中执行的步骤。
还有一点:
需要在本地host 文件中添加主机名和ip的映射关系
如:

如有不理解地方欢迎联系QQ1565189664

posted on 2017-03-17 20:44  新生团队  阅读(485)  评论(0编辑  收藏  举报