前面文章已经搭建好windows环境。上述环境都是使用到2.6.0版本的hadoop,如果有不懂的地方可以联系QQ1565189664  ,接下来主要讨论如何在windows本地中执行MapReduce 任务

这里使用Maven作为项目管理工具,jdk1.8

项目结构如下

 

WCount.java文件代码如下:

package cn.itcast.hadoop.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WCount {

    public static void main(String[] args) {

         
        System.out.println(args.toString());
        

        Configuration conf = new Configuration();
            
            conf.setInt("mapreduce.client.submit.file.replication", 20);
            /*conf.set("mapreduce.framework.name", "yarn");
            conf.set("mapred.job.tracker", "namenode:9001");
            conf.set("fs.hdfs.impl", "org.apache.hadoop.hdfs.DistributedFileSystem");
            conf.set("mapreduce.framework.name", "yarn");
            conf.addResource("core-site.xml");
            conf.addResource("hdfs-site.xml");
            conf.addResource("mapred-site.xml");
            conf.addResource("yarn-site.xml");*/
            //conf.set("mapred.jar", "D:\\workspace\\Hadoop\\target\\Hadoop.jar");
            Job job=null;
            try {
                job = Job.getInstance(conf);
                //notice
                job.setJarByClass(WCount.class);
                
                //set mapper`s property
                job.setMapperClass(WCMapper.class);
                job.setMapOutputKeyClass(Text.class);
                job.setMapOutputValueClass(LongWritable.class);
                FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.1.2:9000/lzh/word.txt"));

                //set reducer`s property
                job.setReducerClass(WCReducer.class);
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(LongWritable.class);
                FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.1.2:9000/lzh/wcut"));
                
                //submit
                job.waitForCompletion(true);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            
        

    }

}

WCMapper.java  代码如下:

package cn.itcast.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{

    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        //accept
        String line = value.toString();
        //split
        String[] words = line.split(" ");
        //loop
        for(String w : words){
            //send
            //System.out.println(w);
            context.write(new Text(w), new LongWritable(1));
        }
    }

    
    
    
    

}

WCReducer.java 代码如下

package cn.itcast.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
     
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context)
            throws IOException, InterruptedException {
        
        //define a counter
        long counter = 0;
        //loop
        for(LongWritable l : values){
            counter += l.get();
        }
        //write
        context.write(key, new LongWritable(counter));
    }
    
 
}

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>HadoopJar</groupId>
  <artifactId>Hadoop</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  <name>Hadoop</name>
  <dependencies>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-common</artifactId>
    <version>2.7.2</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-core</artifactId>
    <version>2.7.2</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-hdfs</artifactId>
    <version>2.7.2</version>
</dependency>
  <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-common -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-common</artifactId>
    <version>2.7.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-jobclient -->
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
    <version>2.7.2</version>
</dependency>

<dependency>
    <groupId>jdk.tools</groupId>
    <artifactId>jdk.tools</artifactId>
    <version>1.8</version>
    <scope>system</scope>
    <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
  </dependencies>
  <build>
        <finalName>Hadoop</finalName>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>  
                <groupId>org.apache.maven.plugins</groupId>  
                <artifactId>maven-resources-plugin</artifactId>  
                <configuration>  
                    <encoding>UTF-8</encoding>  
                </configuration>  
            </plugin>  
        </plugins>
    </build>
</project>
hadoop-mapreduce-client-jobclient  这个jar包在此时可以不需要加入也可以正常运行,这个是在远程提交job的时候有用

log.properties

log4j.rootLogger=DEBUG,stdout,R
 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%5p - %m%n
 
log4j.appender.R=org.apache.log4j.RollingFileAppender 
log4j.appender.R.File=mapreduce_test.log 
log4j.appender.R.MaxFileSize=1MB 
log4j.appender.R.MaxBackupIndex=1 
log4j.appender.R.layout=org.apache.log4j.PatternLayout 
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n 
log4j.logger.com.codefutures=INFO 

上述代码就可以执行一个word.txt 文件字母统计,word.txt 格式如下:

w e r t t t y y u 

d g h j k k l d f 

至此,简单的Mapreduce本地执行方式已经完成,大家去尝试吧!

posted on 2017-03-15 14:48  新生团队  阅读(720)  评论(0编辑  收藏  举报