最优化基础(五)

最优化基础(五)1

无约束问题的最优性条件

引入下列记号:

g(x)=f(x), gk=f(xk), G(x)=2f(x), Gk=2f(xk)

一阶必要条件: 设f(x) 在开集D 上一阶连续可微. 若xDf(x)的一个局部极小点, 则必有g(x)=0.

二阶必要条件:设f(x)在开集D上二阶连续可微. 若xDf(x) 的一个局部极小点, 则必有g(x)=0G(x) 是半正定矩阵.

二阶充分条件:设f(x)在开集D 上二阶连续可微. 若xD 满足条件g(x)=0G(x)是正定矩阵, 则xf(x) 的一个局部极小点.

定理: 设f(x)Rn 上是凸函数并且是一阶连续可微的. 则xRnf(x) 的全局极小点的充要条件是g(x)=0.

无约束优化问题的算法框架

在数值优化中, 一般采用迭代法求解无约束优化问题

min f(x)

的极小点. 迭代法的基本思想是: 给定一个初始点x0, 按照某一迭代规则产生一个迭代序列{xk}. 使得若该序列是有限的, 则最后一个点就是问题的极小点; 否则, 若序列{xk} 是无穷点列时, 它有极限点且这个极限点即为问题的极小点.

算法 (无约束问题的一般算法框架)

步0 :给定初始化参数及初始迭代点x0. 置k:=0.
步1 :若xk 满足某种终止准则, 停止迭代, 以xk作为近似极小点.
步2 :通过求解xk处的某个子问题确定下降方向xk.
步3 :通过某种搜索方式确定步长因子ak, 使得f(xk+akdk)<f(xk).
步4 :令xk+1:=xk+akdk,k:=k+1, 转步1.

定义: 若存在α¯>0, 使得对任意的α(0,α¯]dk0, 有

f(xk+αdk)<f(xk)

则称dkf(x)xk 处的一个下降方向.

引理: 设函数f:DRnR在开集D 上一阶连续可微, 则dkf(x)xk 处一个下降方向的充要条件是

f(xk)Tdk<0

定义: 若某算法只有当初始点x0充分接近极小点x 时, 由算法产生的点列{xk} 才收敛于x, 则称该算法具有局部收敛性. 若对于任意的初始点x0, 由算法产生的点列{xk} 都收敛于x, 则称该算法具有全局收敛性.


  1. 马昌凤. 最优化方法及其Matlab程序设计[M]. 科学出版社, 2010.
posted @ 2017-09-27 11:49  main_c  阅读(369)  评论(0编辑  收藏  举报