Leetcode#84 Largest Rectangle in Histogram

原题地址

 

有两种方法,左右扫描或辅助栈。

方法I: 左右扫描法
考虑到最大面积的矩形高度一定跟某个条一样高,所以挨个枚举每个条,看其向左、向右最多能延伸到多远。在计算左右边界时,可以借助之前计算过的结果迭代(类似动归的感觉)优化以减少时间复杂度,这应该算是唯一的难点了。总的来说,向左一遍,向右一遍,整体求面积再一遍,一共需要3次遍历,时间复杂度是O(n)。

左右扫描法非常直观。

代码:

 1     int largestRectangleArea(vector<int> &height) {
 2         if (height.empty()) return 0;
 3 
 4         int n = height.size();
 5         int maxArea = 0;
 6         int *left = new int[n]; // 向左能延伸多远
 7         int *right = new int[n]; // 向右能延伸多远
 8 
 9         // 向右延伸
10         right[n - 1] = 1;
11         for (int i = n - 2; i >= 0; i--) {
12             if (height[i] > height[i + 1])
13                 right[i] = 1;
14             else {
15                 int j = i + 1;
16                 while (j < n && height[j] >= height[i])
17                     j += right[j];
18                 right[i] = j - i;
19             }
20         }
21 
22         // 向左延伸
23         left[0] = 1;
24         for (int i = 1; i < n; i++) {
25             if (height[i] < height[i - 1])
26                 left[i] = 1;
27             else {
28                 int j = i - 1;
29                 while (j >= 0 && height[j] >= height[i])
30                     j -= left[j];
31                 left[i] = i - j;
32             }
33         }
34 
35         // 求面积
36         maxArea = height[0];
37         for (int i = 0; i < n; i++) {
38             maxArea = max(height[i] * (left[i] + right[i] - 1), maxArea);
39         }
40 
41         return maxArea;
42     }

 

 

方法II: 辅助栈法(网上很多人采用的方法)

根本思想是:依次遍历所有矩形条,尝试计算以该矩形条为高度的矩形面积。但是在遍历的时候我们不知道后面还有什么样的矩形条怎么办?没关系,对于没法确定面积的矩形,压栈,留着以后处理,而对于那些已经可以确定计算出面积的矩形条,留着也没用,弹栈。

如果我们能知道一个矩形条向左向右最远能延伸多远,我们就能计算出以该矩形条为高的矩形面积了!我们怎么知道向左向右能延伸多远?观察下面几种情况:

情况1,第i个矩形比右边相邻的第i+1个矩形高,如下图所示。意味着,以height[i]为高的矩形的右边界就是第i个矩形,因为右边界不能更右了(废话),也不会在左边(向左只会让矩形面积减小)。所以在这种情况下,我们可以立即确定以第i个矩形的高度height[i]为高度的最大矩形面积的右边界。

情况2,第i个矩形比左边相邻的第i-1个矩形高,如下图所示。意味着,以height[i]为高的矩形的左边界就是第i个矩形,因为左边界不能更左了(废话),也不会出现在右边(因为向右只会另矩形面积减小)。所以在这种情况下,我们立即就可以确定以第i个矩形的高度height[i]为高度的最大举行面积的左边界。

现在,我们依次遍历各个矩形条,遍历过的矩形条压入栈中保存,则不难发现下面的现象:

如果当前矩形条的高度高于栈顶的矩形条的高度,对应上面的情况2,我们可以立即得出,当前矩形一定是以它为高的矩形的左边界。那么现在我们还不能确定其右边界,所以除了入栈什么都不用做,如下图所示:

如果当前矩形条的高度小于或等于栈顶矩形条的高度,对应上面的情况1,我们可以立即得出:栈顶的矩形一定是以它为高的矩形的右边界所以,我们可以立刻得到以栈顶的矩形条高度为高度的最大矩形的面积(下图中带颜色的两个矩形)!既然我们算出了前一个条最大矩形的面积,那么也就没必要再留着它了。所以,可以放心把它删掉,或者说合并。

 

按照上述操作遍历完所有矩形条之后,栈中的矩形一定是下面这个样子。(栈里面所有的条肯定是按照高度依次递增的)

此时,对于任何一个矩形条,我们可以确定,它的右边界一定是整个栈里所保留的条形图的最右边界,而它的左边界一定是它这个条自己的左边界,所以,剩余的矩形条也可以立即算出其对应的最大矩形的面积。

其实,只需要在所有的矩形条最后添加一个高度为0的虚拟矩形条,可以省略上面的两小步。这个虚拟矩形条起收割作用。(见代码第2行)

显然时间复杂度是O(n)。

 

具体代码实现有两个技巧:

1. 我们只需要在辅助栈保存矩形的右边界坐标即可,不需要保存高度,因为可以通过右边界坐标得到(height[i] ),也不需要保存左边界坐标,因为上一个矩形的右边界坐标+1就是当前矩形的左边界。

2. 在直方图最后添加一个高度为0的虚拟矩形条,这样保证一次遍历之后栈里面的矩形都被正确处理过了,否则需要再重复一遍。

代码:

 1     int largestRectangleArea(vector<int> &height) {
 2         height.push_back(0); // 添加虚拟矩形条
 3         stack<int> st;
 4         int n = height.size();
 5         int maxArea = 0;
 6         int h, w;
 7 
 8         for (int i = 0; i < n; i++) {
 9             if (st.empty() || height[st.top()] < height[i])
10                 st.push(i);
11             else {
12                 while (!st.empty() && height[i] <= height[st.top()]) {
13                     h = height[st.top()];
14                     st.pop();
15                     w = st.empty() ? i : i - (st.top() + 1);
16                     maxArea = max(maxArea, h * w);
17                 }
18                 st.push(i);
19             }
20         }
21 
22         return maxArea;
23     }

 

posted @ 2015-01-18 16:34  李舜阳  阅读(5029)  评论(1编辑  收藏  举报