Boostable

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

2014年2月25日

摘要: Kernel Principal Components Analysis PCA实际上就是对原坐标进行正交变换,使得变换后的坐标之间相互无关,并且尽可能保留多的信息。但PCA所做的是线性变换,对于某些数据可能需要通过非线性变换,比如在二维空间下对如下数据进行处理。如果还是采用最初的PCA,则得到的主成分是$z_1,z_2$,而这里的$z_1,z_2$都包含了大量的信息,故无法去掉任何一个坐标,也就达不到降维的目的。而此时如果采用极坐标变换(属于非线性变换),我们就可以尽用一条坐标包含大量的信息(每一数据点都可以用不同的角度来表示)。 故而我们引入Kernel PCA,将原空间通过映射,投影到特 阅读全文
posted @ 2014-02-25 20:34 Boostable 阅读(871) 评论(0) 推荐(1) 编辑