程序简介
程序调用tensorflow.keras搭建了一个简单长短记忆型网络(LSTM),以上证指数为例,对数据进行标准化处理,输入5天的'收盘价', '最高价', '最低价','开盘价',输出1天的'收盘价',利用训练集训练网络后,输出测试集的MAE
长短记忆型网络(LSTM):是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题。
程序/数据集下载
代码分析
导入模块、路径
# -*- coding: utf-8 -*-
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.layers import Input,Dense,LSTM,GRU,BatchNormalization
from tensorflow.keras.layers import PReLU
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import mean_absolute_error as MAE
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pandas as pd
import numpy as np
import os
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#用来正常显示负号
plt.rcParams['axes.unicode_minus']=False
#路径目录
baseDir = ''#当前目录
staticDir = os.path.join(baseDir,'Static')#静态文件目录
resultDir = os.path.join(baseDir,'Result')#结果文件目录
读取数据,查看5行
#读取数据
data = pd.read_csv(staticDir+'/000001.csv',encoding='gbk').iloc[-100:,:]
data = data.set_index(['日期'])
data.head()
股票代码 | 名称 | 收盘价 | 最高价 | 最低价 | 开盘价 | 前收盘 | 涨跌额 | 涨跌幅 | 成交量 | 成交金额 | |
---|---|---|---|---|---|---|---|---|---|---|---|
日期 | |||||||||||
2019/9/16 | '000001 | 上证指数 | 3030.7544 | 3042.9284 | 3020.0495 | 3041.9220 | 3031.2351 | -0.4807 | -0.0159 | 221878959 | 2.37E+11 |
2019/9/17 | '000001 | 上证指数 | 2978.1178 | 3023.7109 | 2970.5704 | 3023.7109 | 3030.7544 | -52.6366 | -1.7367 | 223338061 | 2.38E+11 |
2019/9/18 | '000001 | 上证指数 | 2985.6586 | 2996.4022 | 2982.4003 | 2984.0837 | 2978.1178 | 7.5408 | 0.2532 | 168046699 | 2.00E+11 |
2019/9/19 | '000001 | 上证指数 | 2999.2789 | 2999.2789 | 2975.3978 | 2992.9222 | 2985.6586 | 13.6203 | 0.4562 | 162690615 | 1.93E+11 |
2019/9/20 | '000001 | 上证指数 | 3006.4467 | 3011.3400 | 2996.1929 | 3004.8142 | 2999.2789 | 7.1678 | 0.239 | 182145302 | 2.18E+11 |
对输入输出进行标准化,查看5行
#标准化数据集
outputCol = ['收盘价']#输出列
inputCol = ['收盘价', '最高价','最低价','开盘价']#输入列
X = data[inputCol]
Y = data[outputCol]
xScaler = StandardScaler()
yScaler = StandardScaler()
X = xScaler.fit_transform(X)
Y = yScaler.fit_transform(Y)
X[:5,:]
array([[0.94704786, 0.91606531, 0.98497021, 1.04253169],
[0.21175964, 0.65151178, 0.33108448, 0.80913257],
[0.31709816, 0.2755725 , 0.48742125, 0.30125807],
[0.50736208, 0.31517397, 0.39488046, 0.41453503],
[0.60749011, 0.48121048, 0.66969587, 0.5669466 ]])
将数据按时间步进行整理,时间步这里设置为5天,输入为1天
#按时间步组成输入输出集
timeStep = 5#输入天数
outStep = 1#输出天数
xAll = list()
yAll = list()
#按时间步整理数据 输入数据尺寸是(timeStep,5) 输出尺寸是(outSize)
for row in range(data.shape[0]-timeStep-outStep+1):
x = X[row:row+timeStep]
y = Y[row+timeStep:row+timeStep+outStep]
xAll.append(x)
yAll.append(y)
xAll = np.array(xAll).reshape(-1,timeStep,len(inputCol))
yAll = np.array(yAll).reshape(-1,outStep)
print('输入集尺寸',xAll.shape)
print('输出集尺寸',yAll.shape)
输入集尺寸 (95, 5, 4)
输出集尺寸 (95, 1)
数据集分割为训练集和测试集
#分成测试集,训练集
testRate = 0.2#测试比例
splitIndex = int(xAll.shape[0]*(1-testRate))
xTrain = xAll[:splitIndex]
xTest = xAll[splitIndex:]
yTrain = yAll[:splitIndex]
yTest = yAll[splitIndex:]
搭建一个简单的LSTM网络,结构下文会打印出来
def buildLSTM(timeStep,inputColNum,outStep,learnRate=1e-4):
'''
搭建LSTM网络,激活函数为tanh
timeStep:输入时间步
inputColNum:输入列数
outStep:输出时间步
learnRate:学习率
'''
#输入层
inputLayer = Input(shape=(timeStep,inputColNum))
#中间层
middle = LSTM(100,activation='tanh')(inputLayer)
middle = Dense(100,activation='tanh')(middle)
#输出层 全连接
outputLayer = Dense(outStep)(middle)
#建模
model = Model(inputs=inputLayer,outputs=outputLayer)
optimizer = Adam(lr=learnRate)
model.compile(optimizer=optimizer,loss='mse')
model.summary()
return model
#搭建LSTM
lstm = buildLSTM(timeStep=timeStep,inputColNum=len(inputCol),outStep=outStep,learnRate=1e-4)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 5, 4) 0
_________________________________________________________________
lstm (LSTM) (None, 100) 42000
_________________________________________________________________
dense (Dense) (None, 100) 10100
_________________________________________________________________
dense_1 (Dense) (None, 1) 101
=================================================================
Total params: 52,201
Trainable params: 52,201
Non-trainable params: 0
_________________________________________________________________
利用训练集对网络进行训练
#训练网络
epochs = 1000#迭代次数
batchSize = 500#批处理量
lstm.fit(xTrain,yTrain,epochs=epochs,verbose=0,batch_size=batchSize)
对测试集进行预测,保存预测结果,查看5行
#预测 测试集对比
yPredict = lstm.predict(xTest)
yPredict = yScaler.inverse_transform(yPredict)[:,0]
yTest = yScaler.inverse_transform(yTest)[:,0]
result = {'观测值':yTest,'预测值':yPredict}
result = pd.DataFrame(result)
result.index = data.index[timeStep+xTrain.shape[0]:result.shape[0]+timeStep+xTrain.shape[0]]
result.to_excel(resultDir+'/预测结果.xlsx')
result.head()
观测值 | 预测值 | |
---|---|---|
日期 | ||
2020/1/15 | 3090.0379 | 3119.753662 |
2020/1/16 | 3074.0814 | 3103.595947 |
2020/1/17 | 3075.4955 | 3085.278809 |
2020/1/20 | 3095.7873 | 3079.762451 |
2020/1/21 | 3052.1419 | 3094.907471 |
计算测试集MAE,进行可视化
mae = MAE(result['观测值'],result['预测值'])
print('模型测试集MAE',mae)
#可视化
fig,ax = plt.subplots(1,1)
ax.plot(result.index,result['预测值'],label='预测值')
ax.plot(result.index,result['观测值'],label='观测值')
ax.set_title('LSTM预测效果,MAE:%2f'%mae)
ax.legend()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
fig.savefig(resultDir+'/预测折线图.png',dpi=500)
模型测试集MAE 37.06394592927633