摘要: 正则化在机器学习中是一种防止过拟合的技术,它通过在损失函数中添加一个惩罚项来限制模型的复杂度。举一个实际的例子,假设你正在训练一个机器学习模型来预测房价。你有很多特征,如房间数量、地理位置、建筑年份等。如果你的模型过于复杂,例如它尝试拟合每一个训练样本的细微差异,那么它可能在训练数据上表现得很好,但 阅读全文
posted @ 2023-09-04 17:37 bonelee 阅读(38) 评论(0) 推荐(0) 编辑
摘要: import numpy as np # 创建两个一维数组 a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) # 使用numpy.c_将它们连接在一起 """ numpy.c_ 是一个方便的工具,用于沿第二轴连接数组。 它将数组转换为至少2-D,并将它们 阅读全文
posted @ 2023-09-04 10:04 bonelee 阅读(109) 评论(0) 推荐(0) 编辑