会员
周边
众包
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
将者,智、信、仁、勇、严也。
Hi,我是李智华,华为-安全AI算法专家,欢迎来到安全攻防对抗的有趣世界。
博客园
首页
新随笔
联系
订阅
管理
2021年1月5日
特征学习——特征工程自动化,无非类似CNN最后一层softmax前的输出层就是特征表征层,但那是分类器,如何用在无标注数据中是难点——word2vec对“上下文”距离建模来实现特征提取;此外,kernel mechine的结合相当于学习内核,即特征空间
摘要: 通过representation learning,我们可以把一些抽象的知识转化为具体的数值的形式,例如我们使用word2vec对“上下文”的模糊的概念进行了具象的表达,生成的word vector包含了这种先验知识(具体的表现形式就是常出现在上下文里的单词其向量的距离很接近,实际上理解word2v
阅读全文
posted @ 2021-01-05 15:03 bonelee
阅读(216)
评论(0)
推荐(0)
编辑
公告