摘要: Out: n_digits: 10, n_samples 1797, n_features 64 __________________________________________________________________________________ init time inertia 阅读全文
posted @ 2018-05-24 19:56 bonelee 阅读(809) 评论(0) 推荐(0) 编辑
摘要: def get_model(input_dim=33): # Build neural network net = tflearn.input_data(shape=[None, input_dim]) net = batch_normalization(net) #net = tflearn.fu 阅读全文
posted @ 2018-05-24 19:30 bonelee 阅读(985) 评论(0) 推荐(0) 编辑
摘要: How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-prob 阅读全文
posted @ 2018-05-24 17:48 bonelee 阅读(989) 评论(0) 推荐(0) 编辑
摘要: Using SMOTEBoost and RUSBoost to deal with class imbalance from:https://aitopics.org/doc/news:1B9F7A99/ Binary classification with strong class imbala 阅读全文
posted @ 2018-05-24 17:30 bonelee 阅读(5603) 评论(1) 推荐(0) 编辑
摘要: from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt selected_feat_names=set() for i in range(10): #这里我们进行十次循环取交集 tmp = 阅读全文
posted @ 2018-05-24 17:04 bonelee 阅读(4286) 评论(0) 推荐(0) 编辑
摘要: MLP 64,2 preprocessing.MinMaxScaler().fit(X) test confusion_matrix:[[129293 2734] [ 958 23375]] precision recall f1-score support 0 0.99 0.98 0.99 132 阅读全文
posted @ 2018-05-24 11:38 bonelee 阅读(2963) 评论(0) 推荐(0) 编辑
摘要: demo代码: extend data 表示待预测的数据 关于mic: 阅读全文
posted @ 2018-05-24 10:05 bonelee 阅读(1708) 评论(2) 推荐(0) 编辑