daal utils printNumericTable
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | #=============================================================================== # Copyright 2014-2017 Intel Corporation # All Rights Reserved. # # If this software was obtained under the Intel Simplified Software License, # the following terms apply: # # The source code, information and material ("Material") contained herein is # owned by Intel Corporation or its suppliers or licensors, and title to such # Material remains with Intel Corporation or its suppliers or licensors. The # Material contains proprietary information of Intel or its suppliers and # licensors. The Material is protected by worldwide copyright laws and treaty # provisions. No part of the Material may be used, copied, reproduced, # modified, published, uploaded, posted, transmitted, distributed or disclosed # in any way without Intel's prior express written permission. No license under # any patent, copyright or other intellectual property rights in the Material # is granted to or conferred upon you, either expressly, by implication, # inducement, estoppel or otherwise. Any license under such intellectual # property rights must be express and approved by Intel in writing. # # Unless otherwise agreed by Intel in writing, you may not remove or alter this # notice or any other notice embedded in Materials by Intel or Intel's # suppliers or licensors in any way. # # # If this software was obtained under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-UTIL"></a> from __future__ import print_function import sys import numpy as np from daal.data_management import ( CSRNumericTable, NumericTableIface, readOnly, BlockDescriptor, packed_mask, DataSourceIface, FileDataSource, HomogenTensor, SubtensorDescriptor ) CRC_REM = [ 0x00000000 , 0x741B8CD6 , 0xE83719AC , 0x9C2C957A , 0xA475BF8E , 0xD06E3358 , 0x4C42A622 , 0x38592AF4 , 0x3CF0F3CA , 0x48EB7F1C , 0xD4C7EA66 , 0xA0DC66B0 , 0x98854C44 , 0xEC9EC092 , 0x70B255E8 , 0x04A9D93E , 0x79E1E794 , 0x0DFA6B42 , 0x91D6FE38 , 0xE5CD72EE , 0xDD94581A , 0xA98FD4CC , 0x35A341B6 , 0x41B8CD60 , 0x4511145E , 0x310A9888 , 0xAD260DF2 , 0xD93D8124 , 0xE164ABD0 , 0x957F2706 , 0x0953B27C , 0x7D483EAA , 0xF3C3CF28 , 0x87D843FE , 0x1BF4D684 , 0x6FEF5A52 , 0x57B670A6 , 0x23ADFC70 , 0xBF81690A , 0xCB9AE5DC , 0xCF333CE2 , 0xBB28B034 , 0x2704254E , 0x531FA998 , 0x6B46836C , 0x1F5D0FBA , 0x83719AC0 , 0xF76A1616 , 0x8A2228BC , 0xFE39A46A , 0x62153110 , 0x160EBDC6 , 0x2E579732 , 0x5A4C1BE4 , 0xC6608E9E , 0xB27B0248 , 0xB6D2DB76 , 0xC2C957A0 , 0x5EE5C2DA , 0x2AFE4E0C , 0x12A764F8 , 0x66BCE82E , 0xFA907D54 , 0x8E8BF182 , 0x939C1286 , 0xE7879E50 , 0x7BAB0B2A , 0x0FB087FC , 0x37E9AD08 , 0x43F221DE , 0xDFDEB4A4 , 0xABC53872 , 0xAF6CE14C , 0xDB776D9A , 0x475BF8E0 , 0x33407436 , 0x0B195EC2 , 0x7F02D214 , 0xE32E476E , 0x9735CBB8 , 0xEA7DF512 , 0x9E6679C4 , 0x024AECBE , 0x76516068 , 0x4E084A9C , 0x3A13C64A , 0xA63F5330 , 0xD224DFE6 , 0xD68D06D8 , 0xA2968A0E , 0x3EBA1F74 , 0x4AA193A2 , 0x72F8B956 , 0x06E33580 , 0x9ACFA0FA , 0xEED42C2C , 0x605FDDAE , 0x14445178 , 0x8868C402 , 0xFC7348D4 , 0xC42A6220 , 0xB031EEF6 , 0x2C1D7B8C , 0x5806F75A , 0x5CAF2E64 , 0x28B4A2B2 , 0xB49837C8 , 0xC083BB1E , 0xF8DA91EA , 0x8CC11D3C , 0x10ED8846 , 0x64F60490 , 0x19BE3A3A , 0x6DA5B6EC , 0xF1892396 , 0x8592AF40 , 0xBDCB85B4 , 0xC9D00962 , 0x55FC9C18 , 0x21E710CE , 0x254EC9F0 , 0x51554526 , 0xCD79D05C , 0xB9625C8A , 0x813B767E , 0xF520FAA8 , 0x690C6FD2 , 0x1D17E304 , 0x5323A9DA , 0x2738250C , 0xBB14B076 , 0xCF0F3CA0 , 0xF7561654 , 0x834D9A82 , 0x1F610FF8 , 0x6B7A832E , 0x6FD35A10 , 0x1BC8D6C6 , 0x87E443BC , 0xF3FFCF6A , 0xCBA6E59E , 0xBFBD6948 , 0x2391FC32 , 0x578A70E4 , 0x2AC24E4E , 0x5ED9C298 , 0xC2F557E2 , 0xB6EEDB34 , 0x8EB7F1C0 , 0xFAAC7D16 , 0x6680E86C , 0x129B64BA , 0x1632BD84 , 0x62293152 , 0xFE05A428 , 0x8A1E28FE , 0xB247020A , 0xC65C8EDC , 0x5A701BA6 , 0x2E6B9770 , 0xA0E066F2 , 0xD4FBEA24 , 0x48D77F5E , 0x3CCCF388 , 0x0495D97C , 0x708E55AA , 0xECA2C0D0 , 0x98B94C06 , 0x9C109538 , 0xE80B19EE , 0x74278C94 , 0x003C0042 , 0x38652AB6 , 0x4C7EA660 , 0xD052331A , 0xA449BFCC , 0xD9018166 , 0xAD1A0DB0 , 0x313698CA , 0x452D141C , 0x7D743EE8 , 0x096FB23E , 0x95432744 , 0xE158AB92 , 0xE5F172AC , 0x91EAFE7A , 0x0DC66B00 , 0x79DDE7D6 , 0x4184CD22 , 0x359F41F4 , 0xA9B3D48E , 0xDDA85858 , 0xC0BFBB5C , 0xB4A4378A , 0x2888A2F0 , 0x5C932E26 , 0x64CA04D2 , 0x10D18804 , 0x8CFD1D7E , 0xF8E691A8 , 0xFC4F4896 , 0x8854C440 , 0x1478513A , 0x6063DDEC , 0x583AF718 , 0x2C217BCE , 0xB00DEEB4 , 0xC4166262 , 0xB95E5CC8 , 0xCD45D01E , 0x51694564 , 0x2572C9B2 , 0x1D2BE346 , 0x69306F90 , 0xF51CFAEA , 0x8107763C , 0x85AEAF02 , 0xF1B523D4 , 0x6D99B6AE , 0x19823A78 , 0x21DB108C , 0x55C09C5A , 0xC9EC0920 , 0xBDF785F6 , 0x337C7474 , 0x4767F8A2 , 0xDB4B6DD8 , 0xAF50E10E , 0x9709CBFA , 0xE312472C , 0x7F3ED256 , 0x0B255E80 , 0x0F8C87BE , 0x7B970B68 , 0xE7BB9E12 , 0x93A012C4 , 0xABF93830 , 0xDFE2B4E6 , 0x43CE219C , 0x37D5AD4A , 0x4A9D93E0 , 0x3E861F36 , 0xA2AA8A4C , 0xD6B1069A , 0xEEE82C6E , 0x9AF3A0B8 , 0x06DF35C2 , 0x72C4B914 , 0x766D602A , 0x0276ECFC , 0x9E5A7986 , 0xEA41F550 , 0xD218DFA4 , 0xA6035372 , 0x3A2FC608 , 0x4E344ADE ] def readTextFile(dataset_filename): data_list = [] with open (dataset_filename, 'r' ) as f: lines = f.readlines() for line in lines: data_list.append( tuple ([ float (x) for x in line.split( ',' )[: - 1 ]])) return np.array(data_list, dtype = np.ubyte).flatten() def createSparseTable(dataset_filename, ntype = np.float64): try : f = open (dataset_filename, 'r' ) except Exception: sys.exit( "Unable to open '{}'." . format (dataset_filename)) lines = f.readlines() row_index_line = lines[ 0 ] columns_line = lines[ 1 ] values_line = lines[ 2 ] row_offsets = np.array(row_index_line.rstrip( '\n,' ).split( ',' ), dtype = np.uint64) num_vectors = len (row_offsets) - 1 col_indices = np.array(columns_line.rstrip( '\n,' ).split( ',' ), dtype = np.uint64) num_columns = len (col_indices) data = np.array(values_line.rstrip( '\n,' ).split( ',' ), dtype = ntype) num_nonzeros = len (data) max_col = 0 for i in range (num_columns): if col_indices[i] > max_col: max_col = col_indices[i] if sys.version_info[ 0 ] < 3 : num_features = long (max_col) else : num_features = int (max_col) if ( num_columns ! = num_nonzeros or num_nonzeros ! = int (row_offsets[num_vectors]) - 1 or num_features = = 0 or num_vectors = = 0 ): print ( "Incorrect format of file" ) sys.exit() numeric_table = CSRNumericTable(data, col_indices, row_offsets, num_features, num_vectors) return numeric_table def printAprioriItemsets(large_itemsets_table, large_itemsets_support_table, itemsets_to_print = 20 ): large_itemset_count = large_itemsets_support_table.getNumberOfRows() num_items_in_large_itemsets = large_itemsets_table.getNumberOfRows() large_itemsets = large_itemsets_table.getBlockOfRowsAsDouble( 0 , num_items_in_large_itemsets).flatten() large_itemsets_support_data = large_itemsets_support_table.getBlockOfRowsAsDouble( 0 , large_itemset_count).flatten() large_itemsets_array = [[] for x in range (large_itemset_count)] for i in range (num_items_in_large_itemsets): large_itemsets_array[ int (large_itemsets[ 2 * i])].append(large_itemsets[ 2 * i + 1 ]) support_array = [ 0 ] * large_itemset_count for i in range (large_itemset_count): support_array[ int (large_itemsets_support_data[ 2 * i])] = large_itemsets_support_data[ 2 * i + 1 ] print ( "\nApriori example program results\n" ) print ( "Last " + str (itemsets_to_print) + " large itemsets: \n" ) print ( "Itemset\t\t\tSupport" ) if large_itemset_count > itemsets_to_print and itemsets_to_print ! = 0 : i_min = large_itemset_count - itemsets_to_print else : i_min = 0 for i in range (i_min, large_itemset_count): print ( "{" , end = '') for l in range ( len (large_itemsets_array[i]) - 1 ): print ( "{:.0f}" . format (large_itemsets_array[i][l]), end = ', ' ) print ( "{:.0f}}}\t\t" . format (large_itemsets_array[i][ len (large_itemsets_array[i]) - 1 ]), end = '') print ( "{:.0f}" . format (support_array[i])) def printAprioriRules(left_items_table, right_items_table, confidence_table, num_rules_to_print = 20 ): num_rules = confidence_table.getNumberOfRows() num_left_items = left_items_table.getNumberOfRows() num_right_items = right_items_table.getNumberOfRows() left_items = left_items_table.getBlockOfRowsAsDouble( 0 , num_left_items).flatten() right_items = right_items_table.getBlockOfRowsAsDouble( 0 , num_right_items).flatten() confidence = confidence_table.getBlockOfRowsAsDouble( 0 , num_rules).flatten() left_items_array = [[] for x in range (num_rules)] if num_rules = = 0 : print ( "\nNo association rules were found " ) return for i in range (num_left_items): left_items_array[ int (left_items[ 2 * i])].append(left_items[ 2 * i + 1 ]) right_items_array = [[] for x in range (num_right_items)] for i in range (num_right_items): right_items_array[ int (right_items[ 2 * i])].append(right_items[ 2 * i + 1 ]) confidence_array = [ 0 ] * num_rules for i in range (num_rules): confidence_array[i] = confidence[i] print ( "\nLast {} association rules: \n" . format (num_rules_to_print)) print ( "Rule\t\t\t\tConfidence" ) if num_rules > num_rules_to_print and num_rules_to_print ! = 0 : i_min = num_rules - num_rules_to_print else : i_min = 0 for i in range (i_min, num_rules): print ( "{" , end = '') for l in range ( len (left_items_array[i]) - 1 ): print ( "{:.0f}, " . format (left_items_array[i][l]), end = '') print ( "{:.0f}}} => {{" . format (left_items_array[i][ len (left_items_array[i]) - 1 ]), end = '') for l in range ( len (right_items_array[i]) - 1 ): print ( "{:.0f}, " . format (right_items_array[i][l]), end = '') print ( "{:.0f}}}\t\t" . format (right_items_array[i][ len (right_items_array[i]) - 1 ]), end = '') print ( "{0:.6g}" . format (confidence_array[i])) def isFull(layout): layout_int = int (layout) if packed_mask & layout_int: return False return True def printArray(array, num_printed_cols, num_printed_rows, num_cols, message, interval = 10 , flt64 = True ): print (message) flat_array = array.flatten() decimals = '3' if flt64 else '0' for i in range (num_printed_rows): for j in range (num_printed_cols): print ( "{:<{width}.{dec}f}" . format ( flat_array[i * num_cols + j], width = interval, dec = decimals), end = '' ) print () print () def isUpper(layout): if ( layout = = NumericTableIface.upperPackedSymmetricMatrix or layout = = NumericTableIface.upperPackedTriangularMatrix ): return True return False def isLower(layout): if ( layout = = NumericTableIface.lowerPackedSymmetricMatrix or layout = = NumericTableIface.lowerPackedTriangularMatrix ): return True return False def printLowerArray(array, num_printed_rows, message, interval = 10 ): cols = 1 print (message) for i in range (num_printed_rows): for j in range (cols): print ( "{:<{width}.3f}" . format (array[i][j], width = interval), end = '') print () cols + = 1 print () def printUpperArray(array, num_printed_cols, num_printed_rows, num_cols, message, interval = 10 ): flat_array = array.flatten() print (message) ind = 0 for i in range (num_printed_rows): for j in range (i): print ( ' ' * 10 ) for j in range (i, num_printed_cols): print (flat_array[ind]) ind + = 1 for j in range (num_printed_cols, num_cols): ind + = 1 print () print () def printNumericTable(data_table, message = '', num_printed_rows = 0 , num_printed_cols = 0 , interval = 10 ): num_rows = data_table.getNumberOfRows() num_cols = data_table.getNumberOfColumns() layout = data_table.getDataLayout() if num_printed_rows ! = 0 : num_printed_rows = min (num_rows, num_printed_rows) else : num_printed_rows = num_rows if num_printed_cols ! = 0 : num_printed_cols = min (num_cols, num_printed_cols) else : num_printed_cols = num_cols block = BlockDescriptor() if isFull(layout) or layout = = NumericTableIface.csrArray: data_table.getBlockOfRows( 0 , num_rows, readOnly, block) printArray(block.getArray(), num_printed_cols, num_printed_rows, num_cols, message, interval) data_table.releaseBlockOfRows(block) else : packed_table = data_table.getBlockOfRowsAsDouble( 0 , num_rows) if isLower(layout): printLowerArray(packed_table, num_printed_rows, message, interval) elif isUpper(layout): printUpperArray(packed_table, num_printed_cols, num_printed_rows, num_cols, message, interval) def printNumericTables(data_table_1, data_table_2, title_1 = ' ', title_2=' ', message = '', num_printed_rows = 0 , interval = 10 , flt64 = True ): num_rows_1 = data_table_1.getNumberOfRows() num_rows_2 = data_table_2.getNumberOfRows() num_cols_1 = data_table_1.getNumberOfColumns() num_cols_2 = data_table_2.getNumberOfColumns() num_rows = min (num_rows_1, num_rows_2) if num_printed_rows ! = 0 : num_rows = min ( min (num_rows_1, num_rows_2), num_printed_rows) block1 = BlockDescriptor() block2 = BlockDescriptor() data_table_1.getBlockOfRows( 0 , num_rows, readOnly, block1) data_table_2.getBlockOfRows( 0 , num_rows, readOnly, block2) data_float64_1 = block1.getArray() data_float64_2 = block2.getArray() data_float64_1 = data_float64_1.flatten() data_float64_2 = data_float64_2.flatten() decimals = '3' if flt64 else '0' print (message) print ( "{:<{width}}" . format (title_1, width = (interval * num_cols_1)), end = '') print ( "{:<{width}}" . format (title_2, width = (interval * num_cols_2))) for i in range (num_rows): for j in range (num_cols_1): print ( "{:<{width}.{dec}f}" . format (data_float64_1[i * num_cols_1 + j], width = interval, dec = decimals), end = '') for j in range (num_cols_2): print ( "{:<{width}.0f}" . format (data_float64_2[i * num_cols_2 + j], width = interval), end = '') print () print () data_table_1.releaseBlockOfRows(block1) data_table_2.releaseBlockOfRows(block2) def getCRC32( input , prevRes = 0 ): from binascii import crc32 return crc32( input , prevRes) def copyBytes(dst, src, size): for i in range (size): dst[i] = src[i] def printALSRatings(usersOffsetTable, itemsOffsetTable, ratings): nUsers = ratings.getNumberOfRows() nItems = ratings.getNumberOfColumns() ratingsData = ratings.getBlockOfRowsAsDouble( 0 , nUsers).flatten() usersOffset = usersOffsetTable.getBlockOfRowsAsInt( 0 , 1 ).flatten()[ 0 ] itemsOffset = itemsOffsetTable.getBlockOfRowsAsInt( 0 , 1 ).flatten()[ 0 ] print ( " User ID, Item ID, rating" ) for i in range (nUsers): for j in range (nItems): print ( "{}, {}, {:.6g}" . format (i + usersOffset, j + itemsOffset, ratingsData[i * nItems + j])) def printTensor(dataTable, message = "", nPrintedRows = 0 , nPrintedCols = 0 , interval = 10 ): dims = dataTable.getDimensions() nRows = int (dims[ 0 ]) if nPrintedRows ! = 0 : nPrintedRows = min (nRows, nPrintedRows) else : nPrintedRows = nRows block = SubtensorDescriptor() dataTable.getSubtensor([], 0 , nPrintedRows, readOnly, block) nCols = int (block.getSize() / nPrintedRows) if nPrintedCols ! = 0 : nPrintedCols = min (nCols, nPrintedCols) else : nPrintedCols = nCols printArray(block.getArray(), int (nPrintedCols), int (nPrintedRows), int (nCols), message, interval) dataTable.releaseSubtensor(block) def printTensors(dataTable1, dataTable2, title1 = " ", title2=" ", message=" ", nPrintedRows = 0 , interval = 15 ): dims1 = dataTable1.getDimensions() nRows1 = int (dims1[ 0 ]) if nPrintedRows ! = 0 : nPrintedRows = min (nRows1, nPrintedRows) else : nPrintedRows = nRows1 block1 = SubtensorDescriptor() dataTable1.getSubtensor([], 0 , nPrintedRows, readOnly, block1) nCols1 = int (block1.getSize() / nPrintedRows) dims2 = dataTable2.getDimensions() nRows2 = int (dims2[ 0 ]) if nPrintedRows ! = 0 : nPrintedRows = min (nRows2, nPrintedRows) else : nPrintedRows = nRows2 block2 = SubtensorDescriptor() dataTable2.getSubtensor([], 0 , nPrintedRows, readOnly, block2) nCols2 = int (block2.getSize() / nPrintedRows) dataType1 = block1.getArray().flatten() dataType2 = block2.getArray().flatten() print (message) print ( "{:<{width}}" . format (title1, width = (interval * nCols1)), end = '') print ( "{:<{width}}" . format (title2, width = (interval * nCols2))) for i in range (nPrintedRows): for j in range (nCols1): print ( "{v:<{width}.0f}" . format (v = dataType1[i * nCols1 + j], width = interval), end = '') for j in range (nCols2): print ( "{:<{width}.3f}" . format (dataType2[i * nCols2 + j], width = int (interval / 2 )), end = '') print () print () dataTable1.releaseSubtensor(block1) dataTable2.releaseSubtensor(block2) def printTensor3d(dataTable, message = "", nFirstDim = 0 , nSecondDim = 0 , interval = 10 ): dims = dataTable.getDimensions() nRows = int (dims[ 0 ]) nCols = int (dims[ 1 ]) if nFirstDim ! = 0 : nFirstDim = min (nRows, nFirstDim) else : nFirstDim = nRows if nSecondDim ! = 0 : nSecondDim = min (nCols, nSecondDim) else : nSecondDim = nCols block = SubtensorDescriptor() print (message) for i in range (nFirstDim): dataTable.getSubtensor([i], 0 , nSecondDim, readOnly, block) nThirdDim = block.getSize() / nSecondDim printArray(block.getArray(), int (nThirdDim), int (nSecondDim), int (nThirdDim), "", interval) dataTable.releaseSubtensor(block) def readTensorFromCSV(datasetFileName, allowOneColumn = False ): dataSource = FileDataSource(datasetFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext) dataSource.loadDataBlock() nt = dataSource.getNumericTable() size = nt.getNumberOfRows() block = BlockDescriptor() nt.getBlockOfRows( 0 , size, readOnly, block) blockData = block.getArray().flatten() dims = [size] if nt.getNumberOfColumns() > 1 or allowOneColumn: dims.append(nt.getNumberOfColumns()) size * = dims[ 1 ] tensorData = np.array(blockData, dtype = np.float32) nt.releaseBlockOfRows(block) tensorData.shape = dims tensor = HomogenTensor(tensorData, ntype = np.float32) return tensor |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」