时间序列预测——线性回归(上下界、异常检测),异常检测时候历史数据的输入选择是关键,使用过去历史值增加模型健壮性
data download:
https://github.com/nicolasmiller/pyculiarity/blob/master/tests/raw_data.csv
数据集样子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | y timestamp 1980 - 09 - 25 14 : 01 : 00 182.478 1980 - 09 - 25 14 : 02 : 00 176.231 1980 - 09 - 25 14 : 03 : 00 183.917 1980 - 09 - 25 14 : 04 : 00 177.798 1980 - 09 - 25 14 : 05 : 00 165.469 1980 - 09 - 25 14 : 06 : 00 181.878 1980 - 09 - 25 14 : 07 : 00 184.502 1980 - 09 - 25 14 : 08 : 00 183.303 1980 - 09 - 25 14 : 09 : 00 177.578 1980 - 09 - 25 14 : 10 : 00 171.641 1980 - 09 - 25 14 : 11 : 00 191.014 1980 - 09 - 25 14 : 12 : 00 184.068 1980 - 09 - 25 14 : 13 : 00 188.457 1980 - 09 - 25 14 : 14 : 00 175.739 1980 - 09 - 25 14 : 15 : 00 175.524 1980 - 09 - 25 14 : 16 : 00 189.128 1980 - 09 - 25 14 : 17 : 00 176.885 1980 - 09 - 25 14 : 18 : 00 167.140 1980 - 09 - 25 14 : 19 : 00 173.723 1980 - 09 - 25 14 : 20 : 00 168.460 1980 - 09 - 25 14 : 21 : 00 177.623 1980 - 09 - 25 14 : 22 : 00 183.888 |
做了shift处理前后:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | y timestamp 1980 - 09 - 25 14 : 01 : 00 182.478 1980 - 09 - 25 14 : 02 : 00 176.231 1980 - 09 - 25 14 : 03 : 00 183.917 1980 - 09 - 25 14 : 04 : 00 177.798 1980 - 09 - 25 14 : 05 : 00 165.469 1980 - 09 - 25 14 : 06 : 00 181.878 1980 - 09 - 25 14 : 07 : 00 184.502 1980 - 09 - 25 14 : 08 : 00 183.303 1980 - 09 - 25 14 : 09 : 00 177.578 1980 - 09 - 25 14 : 10 : 00 171.641 1980 - 09 - 25 14 : 11 : 00 191.014 1980 - 09 - 25 14 : 12 : 00 184.068 1980 - 09 - 25 14 : 13 : 00 188.457 1980 - 09 - 25 14 : 14 : 00 175.739 1980 - 09 - 25 14 : 15 : 00 175.524 1980 - 09 - 25 14 : 16 : 00 189.128 1980 - 09 - 25 14 : 17 : 00 176.885 1980 - 09 - 25 14 : 18 : 00 167.140 1980 - 09 - 25 14 : 19 : 00 173.723 1980 - 09 - 25 14 : 20 : 00 168.460 1980 - 09 - 25 14 : 21 : 00 177.623 1980 - 09 - 25 14 : 22 : 00 183.888 1980 - 09 - 25 14 : 23 : 00 167.487 1980 - 09 - 25 14 : 24 : 00 165.572 1980 - 09 - 25 14 : 25 : 00 170.480 1980 - 09 - 25 14 : 26 : 00 172.474 1980 - 09 - 25 14 : 27 : 00 166.448 1980 - 09 - 25 14 : 28 : 00 163.098 1980 - 09 - 25 14 : 29 : 00 163.544 1980 - 09 - 25 14 : 30 : 00 163.816 y lag_6 ... lag_23 lag_24 timestamp ... 1980 - 09 - 25 14 : 01 : 00 182.478 NaN ... NaN NaN 1980 - 09 - 25 14 : 02 : 00 176.231 NaN ... NaN NaN 1980 - 09 - 25 14 : 03 : 00 183.917 NaN ... NaN NaN 1980 - 09 - 25 14 : 04 : 00 177.798 NaN ... NaN NaN 1980 - 09 - 25 14 : 05 : 00 165.469 NaN ... NaN NaN 1980 - 09 - 25 14 : 06 : 00 181.878 NaN ... NaN NaN 1980 - 09 - 25 14 : 07 : 00 184.502 182.478 ... NaN NaN 1980 - 09 - 25 14 : 08 : 00 183.303 176.231 ... NaN NaN 1980 - 09 - 25 14 : 09 : 00 177.578 183.917 ... NaN NaN 1980 - 09 - 25 14 : 10 : 00 171.641 177.798 ... NaN NaN 1980 - 09 - 25 14 : 11 : 00 191.014 165.469 ... NaN NaN 1980 - 09 - 25 14 : 12 : 00 184.068 181.878 ... NaN NaN 1980 - 09 - 25 14 : 13 : 00 188.457 184.502 ... NaN NaN 1980 - 09 - 25 14 : 14 : 00 175.739 183.303 ... NaN NaN 1980 - 09 - 25 14 : 15 : 00 175.524 177.578 ... NaN NaN 1980 - 09 - 25 14 : 16 : 00 189.128 171.641 ... NaN NaN 1980 - 09 - 25 14 : 17 : 00 176.885 191.014 ... NaN NaN 1980 - 09 - 25 14 : 18 : 00 167.140 184.068 ... NaN NaN 1980 - 09 - 25 14 : 19 : 00 173.723 188.457 ... NaN NaN 1980 - 09 - 25 14 : 20 : 00 168.460 175.739 ... NaN NaN 1980 - 09 - 25 14 : 21 : 00 177.623 175.524 ... NaN NaN 1980 - 09 - 25 14 : 22 : 00 183.888 189.128 ... NaN NaN 1980 - 09 - 25 14 : 23 : 00 167.487 176.885 ... NaN NaN 1980 - 09 - 25 14 : 24 : 00 165.572 167.140 ... 182.478 NaN 1980 - 09 - 25 14 : 25 : 00 170.480 173.723 ... 176.231 182.478 1980 - 09 - 25 14 : 26 : 00 172.474 168.460 ... 183.917 176.231 1980 - 09 - 25 14 : 27 : 00 166.448 177.623 ... 177.798 183.917 1980 - 09 - 25 14 : 28 : 00 163.098 183.888 ... 165.469 177.798 1980 - 09 - 25 14 : 29 : 00 163.544 167.487 ... 181.878 165.469 1980 - 09 - 25 14 : 30 : 00 163.816 165.572 ... 184.502 181.878 |
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | # coding: utf-8 import matplotlib matplotlib.use( 'Agg' ) import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.model_selection import TimeSeriesSplit # you have everything done for you from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV, RidgeCV # for time-series cross-validation set 5 folds tscv = TimeSeriesSplit(n_splits = 5 ) def mean_absolute_percentage_error(y_true, y_pred): return np.mean(np. abs ((y_true - y_pred) / y_true)) * 100 def timeseries_train_test_split(X, y, test_size): """ Perform train-test split with respect to time series structure """ # get the index after which test set starts test_index = int ( len (X) * ( 1 - test_size)) X_train = X.iloc[:test_index] y_train = y.iloc[:test_index] X_test = X.iloc[test_index:] y_test = y.iloc[test_index:] return X_train, X_test, y_train, y_test def plotModelResults(model, X_train, X_test, y_train, y_test, plot_intervals = False , plot_anomalies = False ): """ Plots modelled vs fact values, prediction intervals and anomalies """ prediction = model.predict(X_test) plt.figure(figsize = ( 15 , 7 )) plt.plot(prediction, "g" , label = "prediction" , linewidth = 2.0 ) plt.plot(y_test.values, label = "actual" , linewidth = 2.0 ) if plot_intervals: cv = cross_val_score(model, X_train, y_train, cv = tscv, scoring = "neg_mean_absolute_error" ) mae = cv.mean() * ( - 1 ) deviation = cv.std() scale = 20 lower = prediction - (mae + scale * deviation) upper = prediction + (mae + scale * deviation) plt.plot(lower, "r--" , label = "upper bond / lower bond" , alpha = 0.5 ) plt.plot(upper, "r--" , alpha = 0.5 ) if plot_anomalies: anomalies = np.array([np.NaN] * len (y_test)) anomalies[y_test < lower] = y_test[y_test < lower] anomalies[y_test > upper] = y_test[y_test > upper] plt.plot(anomalies, "o" , markersize = 10 , label = "Anomalies" ) error = mean_absolute_percentage_error(prediction, y_test) plt.title( "Mean absolute percentage error {0:.2f}%" . format (error)) plt.legend(loc = "best" ) plt.tight_layout() plt.grid( True ); plt.savefig( "linear.png" ) def plotCoefficients(model, X_train): """ Plots sorted coefficient values of the model """ coefs = pd.DataFrame(model.coef_, X_train.columns) coefs.columns = [ "coef" ] coefs[ "abs" ] = coefs.coef. apply (np. abs ) coefs = coefs.sort_values(by = "abs" , ascending = False ).drop([ "abs" ], axis = 1 ) plt.figure(figsize = ( 20 , 12 )) coefs.coef.plot(kind = 'bar' ) plt.grid( True , axis = 'y' ) plt.hlines(y = 0 , xmin = 0 , xmax = len (coefs), linestyles = 'dashed' ) plt.savefig( "linear-cov.png" ) def code_mean(data, cat_feature, real_feature): """ Returns a dictionary where keys are unique categories of the cat_feature, and values are means over real_feature """ return dict (data.groupby(cat_feature)[real_feature].mean()) def prepareData(series, lag_start, lag_end, test_size, target_encoding = False ): """ series: pd.DataFrame dataframe with timeseries lag_start: int initial step back in time to slice target variable example - lag_start = 1 means that the model will see yesterday's values to predict today lag_end: int final step back in time to slice target variable example - lag_end = 4 means that the model will see up to 4 days back in time to predict today test_size: float size of the test dataset after train/test split as percentage of dataset target_encoding: boolean if True - add target averages to the dataset """ # copy of the initial dataset data = pd.DataFrame(series.copy()) data.columns = [ "y" ] # lags of series for i in range (lag_start, lag_end): data[ "lag_{}" . format (i)] = data.y.shift(i) # datetime features # data.index = data.index.to_datetime() data[ "hour" ] = data.index.hour data[ "weekday" ] = data.index.weekday data[ 'is_weekend' ] = data.weekday.isin([ 5 , 6 ]) * 1 if target_encoding: # calculate averages on train set only test_index = int ( len (data.dropna()) * ( 1 - test_size)) data[ 'weekday_average' ] = list ( map ( code_mean(data[:test_index], 'weekday' , "y" ).get, data.weekday)) data[ "hour_average" ] = list ( map ( code_mean(data[:test_index], 'hour' , "y" ).get, data.hour)) # drop encoded variables # data.drop(["hour", "weekday"], axis=1, inplace=True) # train-test split y = data.dropna().y X = data.dropna().drop([ 'y' ], axis = 1 ) X_train, X_test, y_train, y_test = \ timeseries_train_test_split(X, y, test_size = test_size) return X_train, X_test, y_train, y_test def plt_linear(): data = pd.read_csv( 'raw_data.csv' , usecols = [ 'timestamp' , 'count' ]) data[ 'timestamp' ] = pd.to_datetime(data[ 'timestamp' ]) data.set_index( "timestamp" , drop = True , inplace = True ) data.rename(columns = { 'count' : 'y' }, inplace = True ) X_train, X_test, y_train, y_test = \ prepareData(data, lag_start = 6 , lag_end = 25 , test_size = 0.3 , target_encoding = True ) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # lr = LinearRegression() lr = LassoCV(cv = tscv) # lr = RidgeCV(cv=tscv) # lr.fit(X_train_scaled, y_train) """ from xgboost import XGBRegressor lr = XGBRegressor() # lr = xgb.XGBRegressor(max_depth=5, learning_rate=0.1, n_estimators=160, silent=False, objective='reg:gamma') """ lr.fit(X_train_scaled, y_train) """ IMPORTANT Generally tree-based models poorly handle trends in data, compared to linear models, so you have to detrend your series first or use some tricks to make the magic happen. Ideally make the series stationary and then use XGBoost, for example, you can forecast trend separately with a linear model and then add predictions from xgboost to get final forecast. """ plotModelResults(lr, X_train = X_train_scaled, X_test = X_test_scaled, y_train = y_train, y_test = y_test, plot_intervals = True , plot_anomalies = True ) plotCoefficients(lr, X_train = X_train) plt_linear() |
可以看到相关系数!
重构代码,使其可以预测未来:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | # coding: utf-8 import matplotlib matplotlib.use( 'Agg' ) import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.model_selection import TimeSeriesSplit from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV, RidgeCV def mean_absolute_percentage_error(y_true, y_pred): return np.mean(np. abs ((y_true - y_pred) / y_true)) * 100 def timeseries_train_test_split(X, y, test_size, predict_size): """ Perform train-test split with respect to time series structure """ total_size = len (X) # get the index after which test set starts test_index = int (total_size * ( 1 - test_size)) X_train = X.iloc[:test_index] y_train = y.iloc[:test_index] X_test = X.iloc[test_index:total_size - predict_size] y_test = y.iloc[test_index:total_size - predict_size] X_predict = X.iloc[ - predict_size:] y_predict = y.iloc[ - predict_size:] return X_train, X_test, y_train, y_test, X_predict, y_predict def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler): # for predict # not OK for abnormal real value y_predict[ 0 :lag_start] = lr.predict(scaler.transform(X_predict.iloc[ 0 :lag_start])) # last_line = X_test.iloc[-1] for i in range (lag_start, len (X_predict)): # for i in range(0, len(X_predict)): last_line = X_predict.iloc[i - 1 ] index = X_predict.index[i] for j in range (lag_end - 1 , lag_start): X_predict.at[index, "lag_{}" . format (j)] = last_line[ "lag_{}" . format (j - 1 )] X_predict.at[index, "lag_{}" . format (lag_start)] = y_predict[i - 1 ] y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[ 0 ] return y_predict def plot_results(y_predict, y, intervals, img_filename, plot_intervals = False , plot_anomalies = False , extra_plot = None ): """ Plots modelled vs fact values, prediction intervals and anomalies """ assert len (y_predict) = = len (y) plt.figure(figsize = ( 15 , 7 )) # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0) # plt.plot(y.index, y.values, label="actual", linewidth=1.0) plt.plot(y.index, y_predict, ls = '-' , c = '#0072B2' , label = 'predicted y' ) plt.plot(y.index, y.values, 'k.' , label = 'y' ) if extra_plot is not None : # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0) plt.plot(extra_plot.index, extra_plot.values, 'y' , label = 'predicted y' ) if plot_intervals: lower = y_predict - intervals upper = y_predict + intervals # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5) # plt.plot(y.index, upper, "r--", alpha=0.5) plt.fill_between(y.index, lower, upper, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) if extra_plot is not None : # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5) # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5) plt.fill_between(extra_plot.index, extra_plot.values - intervals, extra_plot.values + intervals, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) if plot_anomalies: anomalies_lower = y[y < lower] anomalies_upper = y[y > upper] # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)") # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)") plt.plot(anomalies_lower.index, anomalies_lower.values, "rX" , label = 'abnormal points' ) plt.plot(anomalies_upper.index, anomalies_upper.values, "rX" ) error = mean_absolute_percentage_error(y_predict, y) plt.title( "Mean absolute percentage error {0:.2f}%" . format (error)) plt.legend(loc = "best" ) plt.tight_layout() plt.grid( True ); plt.savefig(img_filename) def plot_arg_importance(model, X_train): """ Plots sorted coefficient values of the model """ coefs = pd.DataFrame(model.coef_, X_train.columns) coefs.columns = [ "coef" ] coefs[ "abs" ] = coefs.coef. apply (np. abs ) coefs = coefs.sort_values(by = "abs" , ascending = False ).drop([ "abs" ], axis = 1 ) plt.figure(figsize = ( 20 , 12 )) coefs.coef.plot(kind = 'bar' ) plt.grid( True , axis = 'y' ) plt.hlines(y = 0 , xmin = 0 , xmax = len (coefs), linestyles = 'dashed' ) plt.savefig( "linear-cov.png" ) def code_mean(data, cat_feature, real_feature): """ Returns a dictionary where keys are unique categories of the cat_feature, and values are means over real_feature """ return dict (data.groupby(cat_feature)[real_feature].mean()) def prepare_data(series, lag_start, lag_end, test_size, target_encoding = False , days_to_predict = 1 ): """ series: pd.DataFrame dataframe with timeseries lag_start: int initial step back in time to slice target variable example - lag_start = 1 means that the model will see yesterday's values to predict today lag_end: int final step back in time to slice target variable example - lag_end = 4 means that the model will see up to 4 days back in time to predict today test_size: float size of the test dataset after train/test split as percentage of dataset target_encoding: boolean if True - add target averages to the dataset """ last_date = series[ "timestamp" ]. max () def make_future_date(periods, freq = 'D' ): """Simulate the trend using the extrapolated generative model. Parameters ---------- periods: Int number of periods to forecast forward. freq: Any valid frequency for pd.date_range, such as 'D' or 'M'. Returns ------- pd.Dataframe that extends forward from the end of self.history for the requested number of periods. """ dates = pd.date_range( start = last_date, periods = periods + 1 , # An extra in case we include start freq = freq) dates = dates[dates > last_date] # Drop start if equals last_date return dates[:periods] # Return correct number of periods predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes future_dates = make_future_date(periods = predict_points, freq = 'T' ) df_future = pd.DataFrame({ "timestamp" : future_dates, "y" : np.zeros( len (future_dates))}) data = pd.concat([series, df_future]) data.set_index( "timestamp" , drop = True , inplace = True ) # data = pd.DataFrame(series.copy()) # data.columns = ["y"] print (data[: 30 ]) # lags of series for i in range (lag_start, lag_end): data[ "lag_{}" . format (i)] = data.y.shift(i) print (data[: 30 ]) # datetime features # data.index = data.index.to_datetime() data[ "hour" ] = data.index.hour data[ "weekday" ] = data.index.weekday data[ 'is_weekend' ] = data.weekday.isin([ 5 , 6 ]) * 1 if target_encoding: # calculate averages on train set only test_index = int ( len (data.dropna()) * ( 1 - test_size)) data[ 'weekday_average' ] = list ( map ( code_mean(data[:test_index], 'weekday' , "y" ).get, data.weekday)) data[ "hour_average" ] = list ( map ( code_mean(data[:test_index], 'hour' , "y" ).get, data.hour)) # drop encoded variables # data.drop(["hour", "weekday"], axis=1, inplace=True) # train-test split y = data.dropna().y X = data.dropna().drop([ 'y' ], axis = 1 ) X_train, X_test, y_train, y_test, X_predict, y_predict = \ timeseries_train_test_split(X, y, test_size = test_size, predict_size = predict_points) return X_train, X_test, y_train, y_test, X_predict, y_predict def calculate_intevals(lr, X_train, y_train, tscv): cv = cross_val_score(lr, X_train, y_train, cv = tscv, scoring = "neg_mean_absolute_error" ) mae = cv.mean() * ( - 1 ) deviation = cv.std() scale = 30 return mae + scale * deviation def plt_linear(): data = pd.read_csv( 'raw_data.csv' , usecols = [ 'timestamp' , 'count' ]) # input format data[ 'timestamp' ] = pd.to_datetime(data[ 'timestamp' ]) data = data.sort_values( 'timestamp' ) data.rename(columns = { 'count' : 'y' }, inplace = True ) lag_start = 1 lag_end = 100 X_train, X_test, y_train, y_test, X_predict, y_predict = \ prepare_data(data, lag_start = lag_start, lag_end = lag_end, test_size = 0.3 , target_encoding = True ) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # for time-series cross-validation set 5 folds tscv = TimeSeriesSplit(n_splits = 5 ) # lr = LinearRegression() lr = LassoCV(cv = tscv) # lr = RidgeCV(cv=tscv) lr.fit(X_train_scaled, y_train) intervals = calculate_intevals(lr, X_train, y_train, tscv) """ y_test_predict = lr.predict(X_test_scaled) plot_results(y_predict=y_test_predict, y=y_test, intervals=intervals, img_filename="linear-test-result.png", plot_intervals=True, plot_anomalies=True) """ y2 = lr.predict(np.concatenate((X_train_scaled, X_test_scaled))) y = pd.concat([y_train, y_test]) # plot_results(y_predict=y2, y=y, intervals=intervals, img_filename="linear-all-result.png", plot_intervals=True, plot_anomalies=True) y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler) plot_results(y_predict = y2, y = y, intervals = intervals, img_filename = "linear-all.png" , plot_intervals = True , plot_anomalies = True , extra_plot = y_future) plot_arg_importance(lr, X_train = X_train) plt_linear() |
绘图:
尤其关键的是,lag_start, lag_end参数,如果lag_start=1,则表示使用前一个时刻输入,会导致模型过拟合,因此上面设置了lag_start=60表示使用一个小时前的数据来预测,防止过拟合。
来lag_start=1的效果:
可以看到,前一个时刻数据值的重要性!因此,最后做趋势预测的时候出现了重大失误,模型过拟合了。
bug修复:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | # coding: utf-8 import matplotlib matplotlib.use( 'Agg' ) import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.model_selection import TimeSeriesSplit from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV, RidgeCV from sklearn.ensemble import GradientBoostingRegressor def mean_absolute_percentage_error(y_true, y_pred): return np.mean(np. abs ((y_true - y_pred) / y_true)) * 100 def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler): # for predict y_predict[ 0 :lag_start] = lr.predict(scaler.transform(X_predict.iloc[ 0 :lag_start])) for i in range (lag_start, len (X_predict)): last_line = X_predict.iloc[i - 1 ] index = X_predict.index[i] for j in range (lag_end - 1 , lag_start, - 1 ): X_predict.at[index, "lag_{}" . format (j)] = last_line[ "lag_{}" . format (j - 1 )] X_predict.at[index, "lag_{}" . format (lag_start)] = y_predict[i - 1 ] y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[ 0 ] return y_predict def plot_results(y_predict, y, intervals, img_filename, plot_intervals = False , plot_anomalies = False , extra_plot = None ): """ Plots modelled vs fact values, prediction intervals and anomalies """ assert len (y_predict) = = len (y) plt.figure(figsize = ( 15 , 7 )) # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0) # plt.plot(y.index, y.values, label="actual", linewidth=1.0) plt.plot(y.index, y_predict, ls = '-' , c = '#0072B2' , label = 'predicted y' ) plt.plot(y.index, y.values, 'k.' , label = 'y' ) if extra_plot is not None : # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0) plt.plot(extra_plot.index, extra_plot.values, 'y' , label = 'predicted y' ) if plot_intervals: lower = y_predict - intervals upper = y_predict + intervals # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5) # plt.plot(y.index, upper, "r--", alpha=0.5) plt.fill_between(y.index, lower, upper, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) if extra_plot is not None : # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5) # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5) plt.fill_between(extra_plot.index, extra_plot.values - intervals, extra_plot.values + intervals, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) if plot_anomalies: anomalies_lower = y[y < lower] anomalies_upper = y[y > upper] # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)") # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)") plt.plot(anomalies_lower.index, anomalies_lower.values, "rX" , label = 'abnormal points' ) plt.plot(anomalies_upper.index, anomalies_upper.values, "rX" ) error = mean_absolute_percentage_error(y_predict, y) plt.title( "Mean absolute percentage error {0:.2f}%" . format (error)) plt.legend(loc = "best" ) plt.tight_layout() plt.grid( True ) plt.savefig(img_filename) def plot_arg_importance(model, X_train, img_filename = "linear-cov.png" ): """ Plots sorted coefficient values of the model """ coefs = pd.DataFrame(model.coef_, X_train.columns) coefs.columns = [ "coef" ] coefs[ "abs" ] = coefs.coef. apply (np. abs ) coefs = coefs.sort_values(by = "abs" , ascending = False ).drop([ "abs" ], axis = 1 ) plt.figure(figsize = ( 20 , 12 )) coefs.coef.plot(kind = 'bar' ) plt.grid( True , axis = 'y' ) plt.hlines(y = 0 , xmin = 0 , xmax = len (coefs), linestyles = 'dashed' ) plt.savefig(img_filename) def code_mean(data, cat_feature, real_feature): """ Returns a dictionary where keys are unique categories of the cat_feature, and values are means over real_feature """ return dict (data.groupby(cat_feature)[real_feature].mean()) def prepare_data(series, lag_start, lag_end, test_size, target_encoding = False , days_to_predict = 2 ): """ series: pd.DataFrame dataframe with timeseries lag_start: int initial step back in time to slice target variable example - lag_start = 1 means that the model will see yesterday's values to predict today lag_end: int final step back in time to slice target variable example - lag_end = 4 means that the model will see up to 4 days back in time to predict today test_size: float size of the test dataset after train/test split as percentage of dataset target_encoding: boolean if True - add target averages to the dataset """ last_date = series[ "timestamp" ]. max () def make_future_date(periods, freq = 'D' ): """Simulate the trend using the extrapolated generative model. Parameters ---------- periods: Int number of periods to forecast forward. freq: Any valid frequency for pd.date_range, such as 'D' or 'M'. Returns ------- pd.Dataframe that extends forward from the end of self.history for the requested number of periods. """ dates = pd.date_range( start = last_date, periods = periods + 1 , # An extra in case we include start freq = freq) dates = dates[dates > last_date] # Drop start if equals last_date return dates[:periods] # Return correct number of periods predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes future_dates = make_future_date(periods = predict_points, freq = 'T' ) df_future = pd.DataFrame({ "timestamp" : future_dates, "y" : np.zeros( len (future_dates))}) data = pd.concat([series, df_future]) data.set_index( "timestamp" , drop = True , inplace = True ) # data = pd.DataFrame(series.copy()) # data.columns = ["y"] # print(data[:30]) # lags of series for i in range (lag_start, lag_end): data[ "lag_{}" . format (i)] = data.y.shift(i) # print(data[:30]) # datetime features # data.index = data.index.to_datetime() data[ "hour" ] = data.index.hour data[ "weekday" ] = data.index.weekday data[ 'is_weekend' ] = data.weekday.isin([ 5 , 6 ]) * 1 test_index = int ( len (series) * ( 1 - test_size)) if target_encoding: # calculate averages on train set only data[ 'weekday_average' ] = list ( map ( code_mean(data[:test_index], 'weekday' , "y" ).get, data.weekday)) data[ "hour_average" ] = list ( map ( code_mean(data[:test_index], 'hour' , "y" ).get, data.hour)) # drop encoded variables # data.drop(["hour", "weekday"], axis=1, inplace=True) # train-test split y = data.dropna().y X = data.dropna().drop([ 'y' ], axis = 1 ) total_size = len (X) # get the index after which test set starts X_train = X.iloc[:test_index] y_train = y.iloc[:test_index] X_test = X.iloc[test_index:total_size - predict_points] y_test = y.iloc[test_index:total_size - predict_points] X_predict = X.iloc[ - predict_points:] y_predict = y.iloc[ - predict_points:] return X_train, X_test, y_train, y_test, X_predict, y_predict def mean_absolute_error(y_true, y_pred): abs_err = np. abs (y_true - y_pred) return np.mean(abs_err), np.std(abs_err) def calculate_intervals2(y_true, y_pred, scale): mae, std = mean_absolute_error(y_true, y_pred) return mae + scale * std def calculate_intervals(lr, X_train, y_train, tscv, scale): cv = cross_val_score(lr, X_train, y_train, cv = tscv, scoring = "neg_mean_squared_error" ) mae = cv.mean() * ( - 1 ) deviation = cv.std() return mae + scale * deviation def linear_predict(data_frame, interval_scale = 30 , lag_start = 60 , lag_end = 100 , days_to_predict = 2 ): """ predict time series data using linear model. :param data_frame: input data frame. Must have timestamp and y columns. Also set index with timestamp. :param interval_scale: interval range scale. :param lag_start: initial step back in time to slice target variable example - lag_start = 1 means that the model will see yesterday's values to predict today :param lag_end: final step back in time to slice target variable example - lag_end = 4 means that the model will see up to 4 days back in time to predict today :param days_to_predict: predicted days in future/ :return: history_predict: history predicted value (pandas.Series) y_future: predicted value for future (pandas.Series) intervals: upper and lower range (float). """ assert "timestamp" in data_frame.columns assert "y" in data_frame.columns X_train, X_test, y_train, y_test, X_predict, y_predict = \ prepare_data(data_frame, lag_start = lag_start, lag_end = lag_end, test_size = 0.3 , target_encoding = True , days_to_predict = days_to_predict) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # for time-series cross-validation set 5 folds tscv = TimeSeriesSplit(n_splits = 5 ) # lr = LinearRegression() lr = GradientBoostingRegressor(n_estimators = 100 , learning_rate = 0.1 , max_depth = 1 , random_state = 666 ) # lr = LassoCV(cv=tscv) # lr = RidgeCV(cv=tscv) lr.fit(X_train_scaled, y_train) # plot_arg_importance(lr, X_train=X_train, img_filename="linear-cov.png") y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler) y = lr.predict(np.concatenate((X_train_scaled, X_test_scaled))) y_history = pd.concat([y_train, y_test]) # intervals = calculate_intervals(lr, X_train, y_train, tscv, scale=interval_scale) intervals = calculate_intervals2(y_history, y, interval_scale) # anomalies_lower = y_history[y_history<y-intervals] # anomalies_upper = y_history[y_history>y+intervals] assert len (y_history.index) = = len (y) return pd.Series(data = y, index = y_history.index, name = "history_predict" ), y_future, intervals def get_anoms(y_real, y_predict, intervals, lower_ratio = 1.0 , upper_ratio = 1.0 ): """ calculat anomal point using predicted value and interval :param y_real: real value (pandas.Series) :param y_predict: predicted value (pandas.Series) :param intervals: upper and lower bound range (float) :param lower_ratio: lower ratio you want to scale :param upper_ratio: upper ratio you want scale :return: anoms_lower, anoms_upper (pandas.Series) """ anomalies_lower_index,anomalies_lower_val = [], [] anomalies_upper_index,anomalies_upper_val = [], [] for timestamp, expect_val in zip (y_predict.index, y_predict.values): real_val = y_real.loc[timestamp] if (expect_val - intervals) * lower_ratio > real_val: anomalies_lower_index.append(timestamp) anomalies_lower_val.append(real_val) if (expect_val + intervals) * upper_ratio < real_val: anomalies_upper_index.append(timestamp) anomalies_upper_val.append(real_val) return pd.Series(data = anomalies_lower_val, index = anomalies_lower_index),\ pd.Series(data = anomalies_upper_val, index = anomalies_upper_index) def plot_history_and_future(y_predict, y_real, intervals, anomalies_lower, anomalies_upper, predicted_future, img_filename, need_lower = True ): """ Plots modelled vs fact values, prediction intervals and anomalies """ assert len (y_predict) < len (y_real) plt.figure(figsize = ( 15 , 7 )) plt.plot(y_predict.index, y_predict.values, ls = '-' , c = '#0072B2' , label = 'predicted y' ) plt.plot(y_real.index, y_real.values, 'k.' , label = 'y' ) if need_lower: plt.fill_between(y_predict.index, y_predict.values - intervals, y_predict.values + intervals, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) else : plt.fill_between(y_predict.index, 0 , y_predict.values + intervals, color = '#0072B2' , alpha = 0.2 , label = 'predicted upper/lower y' ) plt.plot(predicted_future.index, predicted_future.values, 'y' , label = 'predicted y' ) if need_lower: plt.fill_between(predicted_future.index, predicted_future.values - intervals, predicted_future.values + intervals, color = '#0072B2' , alpha = 0.2 ) else : plt.fill_between(predicted_future.index, 0 , predicted_future.values + intervals, color = '#0072B2' , alpha = 0.2 ) if need_lower: plt.plot(anomalies_lower.index, anomalies_lower.values, "rX" , label = 'abnormal points' ) plt.plot(anomalies_upper.index, anomalies_upper.values, "rX" ) else : plt.plot(anomalies_upper.index, anomalies_upper.values, "rX" , label = "abnormal points" ) error = mean_absolute_percentage_error(y_predict, y_real) plt.title( "Mean absolute percentage error {0:.2f}%" . format (error)) plt.legend(loc = "best" ) plt.tight_layout() plt.grid( True ) plt.savefig(img_filename) if __name__ = = "__main__" : data = pd.read_csv( 'raw_data.csv' , usecols = [ 'timestamp' , 'count' ]) # input format data[ 'timestamp' ] = pd.to_datetime(data[ 'timestamp' ]) data = data.sort_values( 'timestamp' ) data.rename(columns = { 'count' : 'y' }, inplace = True ) data.set_index( "timestamp" , drop = False , inplace = True ) y_predict, y_future, intervals = linear_predict(data, interval_scale = 5 , lag_start = 60 , lag_end = 100 , days_to_predict = 3 ) anomalies_lower, anomalies_upper = get_anoms(data[ 'y' ], y_predict, intervals) plot_history_and_future(y_predict = y_predict, y_real = data[ 'y' ], intervals = intervals, anomalies_lower = anomalies_lower, anomalies_upper = anomalies_upper, predicted_future = y_future, img_filename = "linear.png" , need_lower = True ) |
修复了-1的问题:
1 | for j in range (lag_end - 1 , lag_start, - 1 ): |
lag的bug。
此外使用梯度提升树模型做回归,目前看效果略好于其他模型,线性回归模型很健壮,但是在特殊情况下会出现网络流预测值为为负数的情形,根因还没有找到,而梯度提升树没有这个问题,但是GBT在数据平稳,预测应该是常数的时候会出现上升情形(线性回归也有这个问题,WHY???)。如下图所示数据情形:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」