时间序列预测——线性回归(上下界、异常检测),异常检测时候历史数据的输入选择是关键,使用过去历史值增加模型健壮性

data download:

https://github.com/nicolasmiller/pyculiarity/blob/master/tests/raw_data.csv

数据集样子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
                           y
timestamp                  
1980-09-25 14:01:00  182.478
1980-09-25 14:02:00  176.231
1980-09-25 14:03:00  183.917
1980-09-25 14:04:00  177.798
1980-09-25 14:05:00  165.469
1980-09-25 14:06:00  181.878
1980-09-25 14:07:00  184.502
1980-09-25 14:08:00  183.303
1980-09-25 14:09:00  177.578
1980-09-25 14:10:00  171.641
1980-09-25 14:11:00  191.014
1980-09-25 14:12:00  184.068
1980-09-25 14:13:00  188.457
1980-09-25 14:14:00  175.739
1980-09-25 14:15:00  175.524
1980-09-25 14:16:00  189.128
1980-09-25 14:17:00  176.885
1980-09-25 14:18:00  167.140
1980-09-25 14:19:00  173.723
1980-09-25 14:20:00  168.460
1980-09-25 14:21:00  177.623
1980-09-25 14:22:00  183.888

 做了shift处理前后:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
                           y
timestamp                  
1980-09-25 14:01:00  182.478
1980-09-25 14:02:00  176.231
1980-09-25 14:03:00  183.917
1980-09-25 14:04:00  177.798
1980-09-25 14:05:00  165.469
1980-09-25 14:06:00  181.878
1980-09-25 14:07:00  184.502
1980-09-25 14:08:00  183.303
1980-09-25 14:09:00  177.578
1980-09-25 14:10:00  171.641
1980-09-25 14:11:00  191.014
1980-09-25 14:12:00  184.068
1980-09-25 14:13:00  188.457
1980-09-25 14:14:00  175.739
1980-09-25 14:15:00  175.524
1980-09-25 14:16:00  189.128
1980-09-25 14:17:00  176.885
1980-09-25 14:18:00  167.140
1980-09-25 14:19:00  173.723
1980-09-25 14:20:00  168.460
1980-09-25 14:21:00  177.623
1980-09-25 14:22:00  183.888
1980-09-25 14:23:00  167.487
1980-09-25 14:24:00  165.572
1980-09-25 14:25:00  170.480
1980-09-25 14:26:00  172.474
1980-09-25 14:27:00  166.448
1980-09-25 14:28:00  163.098
1980-09-25 14:29:00  163.544
1980-09-25 14:30:00  163.816
                           y    lag_6   ...      lag_23   lag_24
timestamp                               ...                    
1980-09-25 14:01:00  182.478      NaN   ...         NaN      NaN
1980-09-25 14:02:00  176.231      NaN   ...         NaN      NaN
1980-09-25 14:03:00  183.917      NaN   ...         NaN      NaN
1980-09-25 14:04:00  177.798      NaN   ...         NaN      NaN
1980-09-25 14:05:00  165.469      NaN   ...         NaN      NaN
1980-09-25 14:06:00  181.878      NaN   ...         NaN      NaN
1980-09-25 14:07:00  184.502  182.478   ...         NaN      NaN
1980-09-25 14:08:00  183.303  176.231   ...         NaN      NaN
1980-09-25 14:09:00  177.578  183.917   ...         NaN      NaN
1980-09-25 14:10:00  171.641  177.798   ...         NaN      NaN
1980-09-25 14:11:00  191.014  165.469   ...         NaN      NaN
1980-09-25 14:12:00  184.068  181.878   ...         NaN      NaN
1980-09-25 14:13:00  188.457  184.502   ...         NaN      NaN
1980-09-25 14:14:00  175.739  183.303   ...         NaN      NaN
1980-09-25 14:15:00  175.524  177.578   ...         NaN      NaN
1980-09-25 14:16:00  189.128  171.641   ...         NaN      NaN
1980-09-25 14:17:00  176.885  191.014   ...         NaN      NaN
1980-09-25 14:18:00  167.140  184.068   ...         NaN      NaN
1980-09-25 14:19:00  173.723  188.457   ...         NaN      NaN
1980-09-25 14:20:00  168.460  175.739   ...         NaN      NaN
1980-09-25 14:21:00  177.623  175.524   ...         NaN      NaN
1980-09-25 14:22:00  183.888  189.128   ...         NaN      NaN
1980-09-25 14:23:00  167.487  176.885   ...         NaN      NaN
1980-09-25 14:24:00  165.572  167.140   ...     182.478      NaN
1980-09-25 14:25:00  170.480  173.723   ...     176.231  182.478
1980-09-25 14:26:00  172.474  168.460   ...     183.917  176.231
1980-09-25 14:27:00  166.448  177.623   ...     177.798  183.917
1980-09-25 14:28:00  163.098  183.888   ...     165.469  177.798
1980-09-25 14:29:00  163.544  167.487   ...     181.878  165.469
1980-09-25 14:30:00  163.816  165.572   ...     184.502  181.878

 

 代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding: utf-8
 
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import TimeSeriesSplit  # you have everything done for you
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoCV, RidgeCV
 
 
# for time-series cross-validation set 5 folds
tscv = TimeSeriesSplit(n_splits=5)
 
 
def mean_absolute_percentage_error(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
 
 
def timeseries_train_test_split(X, y, test_size):
    """
        Perform train-test split with respect to time series structure
    """
 
    # get the index after which test set starts
    test_index = int(len(X) * (1 - test_size))
 
    X_train = X.iloc[:test_index]
    y_train = y.iloc[:test_index]
    X_test = X.iloc[test_index:]
    y_test = y.iloc[test_index:]
 
    return X_train, X_test, y_train, y_test
 
 
def plotModelResults(model, X_train, X_test, y_train, y_test, plot_intervals=False, plot_anomalies=False):
    """
        Plots modelled vs fact values, prediction intervals and anomalies
 
    """
    prediction = model.predict(X_test)
 
    plt.figure(figsize=(15, 7))
    plt.plot(prediction, "g", label="prediction", linewidth=2.0)
    plt.plot(y_test.values, label="actual", linewidth=2.0)
 
    if plot_intervals:
        cv = cross_val_score(model, X_train, y_train,
                             cv=tscv,
                             scoring="neg_mean_absolute_error")
        mae = cv.mean() * (-1)
        deviation = cv.std()
 
        scale = 20
        lower = prediction - (mae + scale * deviation)
        upper = prediction + (mae + scale * deviation)
 
        plt.plot(lower, "r--", label="upper bond / lower bond", alpha=0.5)
        plt.plot(upper, "r--", alpha=0.5)
 
        if plot_anomalies:
            anomalies = np.array([np.NaN] * len(y_test))
            anomalies[y_test < lower] = y_test[y_test < lower]
            anomalies[y_test > upper] = y_test[y_test > upper]
            plt.plot(anomalies, "o", markersize=10, label="Anomalies")
 
    error = mean_absolute_percentage_error(prediction, y_test)
    plt.title("Mean absolute percentage error {0:.2f}%".format(error))
    plt.legend(loc="best")
    plt.tight_layout()
    plt.grid(True);
    plt.savefig("linear.png")
 
 
def plotCoefficients(model, X_train):
    """
        Plots sorted coefficient values of the model
    """
    coefs = pd.DataFrame(model.coef_, X_train.columns)
    coefs.columns = ["coef"]
    coefs["abs"] = coefs.coef.apply(np.abs)
    coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
 
    plt.figure(figsize=(20, 12))
    coefs.coef.plot(kind='bar')
    plt.grid(True, axis='y')
    plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
    plt.savefig("linear-cov.png")
 
 
def code_mean(data, cat_feature, real_feature):
    """
    Returns a dictionary where keys are unique categories of the cat_feature,
    and values are means over real_feature
    """
    return dict(data.groupby(cat_feature)[real_feature].mean())
 
 
def prepareData(series, lag_start, lag_end, test_size, target_encoding=False):
    """
        series: pd.DataFrame
            dataframe with timeseries
        lag_start: int
            initial step back in time to slice target variable
            example - lag_start = 1 means that the model
                      will see yesterday's values to predict today
        lag_end: int
            final step back in time to slice target variable
            example - lag_end = 4 means that the model
                      will see up to 4 days back in time to predict today
        test_size: float
            size of the test dataset after train/test split as percentage of dataset
        target_encoding: boolean
            if True - add target averages to the dataset
 
    """
    # copy of the initial dataset
    data = pd.DataFrame(series.copy())
    data.columns = ["y"]
 
    # lags of series
    for i in range(lag_start, lag_end):
        data["lag_{}".format(i)] = data.y.shift(i)
 
    # datetime features
    # data.index = data.index.to_datetime()
    data["hour"] = data.index.hour
    data["weekday"] = data.index.weekday
    data['is_weekend'] = data.weekday.isin([5, 6]) * 1
 
    if target_encoding:
        # calculate averages on train set only
        test_index = int(len(data.dropna()) * (1 - test_size))
        data['weekday_average'] = list(map(
            code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
        data["hour_average"] = list(map(
            code_mean(data[:test_index], 'hour', "y").get, data.hour))
 
        # drop encoded variables
        # data.drop(["hour", "weekday"], axis=1, inplace=True)
 
    # train-test split
    y = data.dropna().y
    X = data.dropna().drop(['y'], axis=1)
    X_train, X_test, y_train, y_test = \
        timeseries_train_test_split(X, y, test_size=test_size)
 
    return X_train, X_test, y_train, y_test
 
 
def plt_linear():
    data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
    data['timestamp'] = pd.to_datetime(data['timestamp'])
    data.set_index("timestamp", drop=True, inplace=True)
    data.rename(columns={'count': 'y'}, inplace=True)
 
    X_train, X_test, y_train, y_test = \
        prepareData(data, lag_start=6, lag_end=25, test_size=0.3, target_encoding=True)
 
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
 
 
    # lr = LinearRegression()
    lr = LassoCV(cv=tscv)
    # lr = RidgeCV(cv=tscv)
    # lr.fit(X_train_scaled, y_train)
 
    """
    from xgboost import XGBRegressor
    lr = XGBRegressor()
    # lr = xgb.XGBRegressor(max_depth=5, learning_rate=0.1, n_estimators=160, silent=False, objective='reg:gamma')
    """
 
    lr.fit(X_train_scaled, y_train)
 
    """
    IMPORTANT
    Generally tree-based models poorly handle trends in data, compared to linear models,
    so you have to detrend your series first or use some tricks to make the magic happen.
    Ideally make the series stationary and then use XGBoost, for example, you can forecast
    trend separately with a linear model and then add predictions from xgboost to get final forecast.
    """
 
    plotModelResults(lr, X_train=X_train_scaled, X_test=X_test_scaled,  y_train=y_train, y_test=y_test, plot_intervals=True, plot_anomalies=True)
    plotCoefficients(lr, X_train=X_train)
 
 
plt_linear()

 

可以看到相关系数!

重构代码,使其可以预测未来:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# coding: utf-8
 
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import TimeSeriesSplit
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoCV, RidgeCV
 
 
def mean_absolute_percentage_error(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
 
 
def timeseries_train_test_split(X, y, test_size, predict_size):
    """
        Perform train-test split with respect to time series structure
    """
 
    total_size = len(X)
    # get the index after which test set starts
    test_index = int(total_size * (1 - test_size))
 
    X_train = X.iloc[:test_index]
    y_train = y.iloc[:test_index]
    X_test = X.iloc[test_index:total_size-predict_size]
    y_test = y.iloc[test_index:total_size-predict_size]
    X_predict = X.iloc[-predict_size:]
    y_predict = y.iloc[-predict_size:]
 
    return X_train, X_test, y_train, y_test, X_predict, y_predict
 
 
def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler):
    # for predict
    # not OK for abnormal real value
    y_predict[0:lag_start] = lr.predict(scaler.transform(X_predict.iloc[0:lag_start]))
    # last_line = X_test.iloc[-1]
    for i in range(lag_start, len(X_predict)):
    # for i in range(0, len(X_predict)):
        last_line = X_predict.iloc[i-1]
        index = X_predict.index[i]
        for j in range(lag_end-1, lag_start):
            X_predict.at[index, "lag_{}".format(j)] = last_line["lag_{}".format(j-1)]
        X_predict.at[index, "lag_{}".format(lag_start)] = y_predict[i-1]
        y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[0]
    return y_predict
 
 
def plot_results(y_predict, y, intervals, img_filename, plot_intervals=False, plot_anomalies=False, extra_plot=None):
    """
        Plots modelled vs fact values, prediction intervals and anomalies
    """
    assert len(y_predict) == len(y)
    plt.figure(figsize=(15, 7))
    # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0)
    # plt.plot(y.index, y.values, label="actual", linewidth=1.0)
 
    plt.plot(y.index, y_predict, ls='-', c='#0072B2', label='predicted y')
    plt.plot(y.index, y.values, 'k.', label='y')
 
    if extra_plot is not None:
        # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0)
        plt.plot(extra_plot.index, extra_plot.values, 'y', label='predicted y')
 
    if plot_intervals:
        lower = y_predict - intervals
        upper = y_predict + intervals
        # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5)
        # plt.plot(y.index, upper, "r--", alpha=0.5)
 
        plt.fill_between(y.index, lower, upper, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
 
        if extra_plot is not None:
            # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5)
            # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5)
            plt.fill_between(extra_plot.index, extra_plot.values-intervals, extra_plot.values+intervals,
                             color='#0072B2', alpha=0.2, label='predicted upper/lower y')
 
        if plot_anomalies:
            anomalies_lower = y[y < lower]
            anomalies_upper = y[y > upper]
            # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)")
            # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)")
            plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
            plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
 
    error = mean_absolute_percentage_error(y_predict, y)
    plt.title("Mean absolute percentage error {0:.2f}%".format(error))
    plt.legend(loc="best")
    plt.tight_layout()
    plt.grid(True);
    plt.savefig(img_filename)
 
 
 
def plot_arg_importance(model, X_train):
    """
        Plots sorted coefficient values of the model
    """
    coefs = pd.DataFrame(model.coef_, X_train.columns)
    coefs.columns = ["coef"]
    coefs["abs"] = coefs.coef.apply(np.abs)
    coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
 
    plt.figure(figsize=(20, 12))
    coefs.coef.plot(kind='bar')
    plt.grid(True, axis='y')
    plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
    plt.savefig("linear-cov.png")
 
 
def code_mean(data, cat_feature, real_feature):
    """
    Returns a dictionary where keys are unique categories of the cat_feature,
    and values are means over real_feature
    """
    return dict(data.groupby(cat_feature)[real_feature].mean())
 
 
def prepare_data(series, lag_start, lag_end, test_size, target_encoding=False, days_to_predict=1):
    """
        series: pd.DataFrame
            dataframe with timeseries
        lag_start: int
            initial step back in time to slice target variable
            example - lag_start = 1 means that the model
                      will see yesterday's values to predict today
        lag_end: int
            final step back in time to slice target variable
            example - lag_end = 4 means that the model
                      will see up to 4 days back in time to predict today
        test_size: float
            size of the test dataset after train/test split as percentage of dataset
        target_encoding: boolean
            if True - add target averages to the dataset
 
    """
    last_date = series["timestamp"].max()
 
    def make_future_date(periods, freq='D'):
        """Simulate the trend using the extrapolated generative model.
 
        Parameters
        ----------
        periods: Int number of periods to forecast forward.
        freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
        Returns
        -------
        pd.Dataframe that extends forward from the end of self.history for the
        requested number of periods.
        """
        dates = pd.date_range(
            start=last_date,
            periods=periods + 1# An extra in case we include start
            freq=freq)
        dates = dates[dates > last_date]  # Drop start if equals last_date
        return dates[:periods]  # Return correct number of periods
 
    predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes
 
    future_dates = make_future_date(periods=predict_points, freq='T')
    df_future = pd.DataFrame({"timestamp": future_dates, "y": np.zeros(len(future_dates))})
 
    data = pd.concat([series, df_future])
    data.set_index("timestamp", drop=True, inplace=True)
    # data = pd.DataFrame(series.copy())
    # data.columns = ["y"]
    print(data[:30])
 
    # lags of series
    for i in range(lag_start, lag_end):
        data["lag_{}".format(i)] = data.y.shift(i)
    print(data[:30])
 
    # datetime features
    # data.index = data.index.to_datetime()
    data["hour"] = data.index.hour
    data["weekday"] = data.index.weekday
    data['is_weekend'] = data.weekday.isin([5, 6]) * 1
 
    if target_encoding:
        # calculate averages on train set only
        test_index = int(len(data.dropna()) * (1 - test_size))
        data['weekday_average'] = list(map(
            code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
        data["hour_average"] = list(map(
            code_mean(data[:test_index], 'hour', "y").get, data.hour))
 
        # drop encoded variables
        # data.drop(["hour", "weekday"], axis=1, inplace=True)
 
    # train-test split
    y = data.dropna().y
    X = data.dropna().drop(['y'], axis=1)
    X_train, X_test, y_train, y_test, X_predict, y_predict = \
        timeseries_train_test_split(X, y, test_size=test_size, predict_size=predict_points)
 
    return X_train, X_test, y_train, y_test, X_predict, y_predict
 
 
def calculate_intevals(lr, X_train, y_train, tscv):
    cv = cross_val_score(lr, X_train, y_train,
                         cv=tscv,
                         scoring="neg_mean_absolute_error")
    mae = cv.mean() * (-1)
    deviation = cv.std()
    scale = 30
    return  mae + scale * deviation
 
 
def plt_linear():
    data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
    # input format
    data['timestamp'] = pd.to_datetime(data['timestamp'])
    data = data.sort_values('timestamp')
    data.rename(columns={'count': 'y'}, inplace=True)
 
    lag_start = 1
    lag_end = 100
    X_train, X_test, y_train, y_test, X_predict, y_predict = \
        prepare_data(data, lag_start=lag_start, lag_end=lag_end, test_size=0.3, target_encoding=True)
 
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
 
    # for time-series cross-validation set 5 folds
    tscv = TimeSeriesSplit(n_splits=5)
 
    # lr = LinearRegression()
    lr = LassoCV(cv=tscv)
    # lr = RidgeCV(cv=tscv)
 
    lr.fit(X_train_scaled, y_train)
 
    intervals = calculate_intevals(lr, X_train, y_train, tscv)
 
    """
    y_test_predict = lr.predict(X_test_scaled)
    plot_results(y_predict=y_test_predict, y=y_test, intervals=intervals, img_filename="linear-test-result.png", plot_intervals=True, plot_anomalies=True)
    """
 
    y2 = lr.predict(np.concatenate((X_train_scaled, X_test_scaled)))
    y = pd.concat([y_train, y_test])
    # plot_results(y_predict=y2, y=y, intervals=intervals, img_filename="linear-all-result.png", plot_intervals=True, plot_anomalies=True)
 
    y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler)
    plot_results(y_predict=y2, y=y, intervals=intervals, img_filename="linear-all.png", plot_intervals=True, plot_anomalies=True, extra_plot=y_future)
 
    plot_arg_importance(lr, X_train=X_train)
 
 
plt_linear()

 

绘图:

尤其关键的是,lag_start, lag_end参数,如果lag_start=1,则表示使用前一个时刻输入,会导致模型过拟合,因此上面设置了lag_start=60表示使用一个小时前的数据来预测,防止过拟合。

来lag_start=1的效果:

可以看到,前一个时刻数据值的重要性!因此,最后做趋势预测的时候出现了重大失误,模型过拟合了。

 

bug修复:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# coding: utf-8
 
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import TimeSeriesSplit
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LassoCV, RidgeCV
from sklearn.ensemble import GradientBoostingRegressor
 
 
 
def mean_absolute_percentage_error(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
 
 
def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler):
    # for predict
    y_predict[0:lag_start] = lr.predict(scaler.transform(X_predict.iloc[0:lag_start]))
    for i in range(lag_start, len(X_predict)):
        last_line = X_predict.iloc[i-1]
        index = X_predict.index[i]
        for j in range(lag_end-1, lag_start, -1):
            X_predict.at[index, "lag_{}".format(j)] = last_line["lag_{}".format(j-1)]
        X_predict.at[index, "lag_{}".format(lag_start)] = y_predict[i-1]
        y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[0]
    return y_predict
 
 
def plot_results(y_predict, y, intervals, img_filename, plot_intervals=False, plot_anomalies=False, extra_plot=None):
    """
        Plots modelled vs fact values, prediction intervals and anomalies
    """
    assert len(y_predict) == len(y)
    plt.figure(figsize=(15, 7))
    # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0)
    # plt.plot(y.index, y.values, label="actual", linewidth=1.0)
 
    plt.plot(y.index, y_predict, ls='-', c='#0072B2', label='predicted y')
    plt.plot(y.index, y.values, 'k.', label='y')
 
    if extra_plot is not None:
        # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0)
        plt.plot(extra_plot.index, extra_plot.values, 'y', label='predicted y')
 
    if plot_intervals:
        lower = y_predict - intervals
        upper = y_predict + intervals
        # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5)
        # plt.plot(y.index, upper, "r--", alpha=0.5)
 
        plt.fill_between(y.index, lower, upper, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
 
        if extra_plot is not None:
            # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5)
            # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5)
            plt.fill_between(extra_plot.index, extra_plot.values-intervals, extra_plot.values+intervals,
                             color='#0072B2', alpha=0.2, label='predicted upper/lower y')
 
        if plot_anomalies:
            anomalies_lower = y[y < lower]
            anomalies_upper = y[y > upper]
            # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)")
            # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)")
            plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
            plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
 
    error = mean_absolute_percentage_error(y_predict, y)
    plt.title("Mean absolute percentage error {0:.2f}%".format(error))
    plt.legend(loc="best")
    plt.tight_layout()
    plt.grid(True)
    plt.savefig(img_filename)
 
 
 
def plot_arg_importance(model, X_train, img_filename="linear-cov.png"):
    """
        Plots sorted coefficient values of the model
    """
    coefs = pd.DataFrame(model.coef_, X_train.columns)
    coefs.columns = ["coef"]
    coefs["abs"] = coefs.coef.apply(np.abs)
    coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
 
    plt.figure(figsize=(20, 12))
    coefs.coef.plot(kind='bar')
    plt.grid(True, axis='y')
    plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
    plt.savefig(img_filename)
 
 
def code_mean(data, cat_feature, real_feature):
    """
    Returns a dictionary where keys are unique categories of the cat_feature,
    and values are means over real_feature
    """
    return dict(data.groupby(cat_feature)[real_feature].mean())
 
 
def prepare_data(series, lag_start, lag_end, test_size, target_encoding=False, days_to_predict=2):
    """
        series: pd.DataFrame
            dataframe with timeseries
        lag_start: int
            initial step back in time to slice target variable
            example - lag_start = 1 means that the model
                      will see yesterday's values to predict today
        lag_end: int
            final step back in time to slice target variable
            example - lag_end = 4 means that the model
                      will see up to 4 days back in time to predict today
        test_size: float
            size of the test dataset after train/test split as percentage of dataset
        target_encoding: boolean
            if True - add target averages to the dataset
 
    """
    last_date = series["timestamp"].max()
 
    def make_future_date(periods, freq='D'):
        """Simulate the trend using the extrapolated generative model.
 
        Parameters
        ----------
        periods: Int number of periods to forecast forward.
        freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
        Returns
        -------
        pd.Dataframe that extends forward from the end of self.history for the
        requested number of periods.
        """
        dates = pd.date_range(
            start=last_date,
            periods=periods + 1# An extra in case we include start
            freq=freq)
        dates = dates[dates > last_date]  # Drop start if equals last_date
        return dates[:periods]  # Return correct number of periods
 
    predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes
 
    future_dates = make_future_date(periods=predict_points, freq='T')
    df_future = pd.DataFrame({"timestamp": future_dates, "y": np.zeros(len(future_dates))})
 
    data = pd.concat([series, df_future])
    data.set_index("timestamp", drop=True, inplace=True)
    # data = pd.DataFrame(series.copy())
    # data.columns = ["y"]
    # print(data[:30])
 
    # lags of series
    for i in range(lag_start, lag_end):
        data["lag_{}".format(i)] = data.y.shift(i)
    # print(data[:30])
 
    # datetime features
    # data.index = data.index.to_datetime()
    data["hour"] = data.index.hour
    data["weekday"] = data.index.weekday
    data['is_weekend'] = data.weekday.isin([5, 6]) * 1
 
    test_index = int(len(series) * (1 - test_size))
    if target_encoding:
        # calculate averages on train set only
        data['weekday_average'] = list(map(
            code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
        data["hour_average"] = list(map(
            code_mean(data[:test_index], 'hour', "y").get, data.hour))
 
        # drop encoded variables
        # data.drop(["hour", "weekday"], axis=1, inplace=True)
 
    # train-test split
    y = data.dropna().y
    X = data.dropna().drop(['y'], axis=1)
 
 
    total_size = len(X)
    # get the index after which test set starts
    X_train = X.iloc[:test_index]
    y_train = y.iloc[:test_index]
    X_test = X.iloc[test_index:total_size-predict_points]
    y_test = y.iloc[test_index:total_size-predict_points]
    X_predict = X.iloc[-predict_points:]
    y_predict = y.iloc[-predict_points:]
 
    return X_train, X_test, y_train, y_test, X_predict, y_predict
 
 
def mean_absolute_error(y_true, y_pred):
    abs_err = np.abs(y_true-y_pred)
    return np.mean(abs_err), np.std(abs_err)
 
 
def calculate_intervals2(y_true, y_pred, scale):
    mae, std = mean_absolute_error(y_true, y_pred)
    return mae + scale * std
 
 
def calculate_intervals(lr, X_train, y_train, tscv, scale):
    cv = cross_val_score(lr, X_train, y_train,
                         cv=tscv,
                         scoring="neg_mean_squared_error")
    mae = cv.mean() * (-1)
    deviation = cv.std()
    return mae + scale * deviation
 
 
def linear_predict(data_frame, interval_scale=30, lag_start=60, lag_end=100, days_to_predict=2):
    """
     predict time series data using linear model.
 
    :param data_frame:  input data frame. Must have timestamp and y columns. Also set index with timestamp.
    :param interval_scale:  interval range scale.
    :param lag_start:
            initial step back in time to slice target variable
            example - lag_start = 1 means that the model
                      will see yesterday's values to predict today
    :param lag_end:
            final step back in time to slice target variable
            example - lag_end = 4 means that the model
                      will see up to 4 days back in time to predict today
    :param days_to_predict: predicted days in future/
    :return:
        history_predict: history predicted value (pandas.Series)
        y_future: predicted value for future (pandas.Series)
        intervals: upper and lower range (float).
    """
    assert "timestamp" in data_frame.columns
    assert "y" in data_frame.columns
 
    X_train, X_test, y_train, y_test, X_predict, y_predict = \
        prepare_data(data_frame, lag_start=lag_start, lag_end=lag_end, test_size=0.3, target_encoding=True, days_to_predict=days_to_predict)
 
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
 
    # for time-series cross-validation set 5 folds
    tscv = TimeSeriesSplit(n_splits=5)
 
    # lr = LinearRegression()
    lr = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=666)
    # lr = LassoCV(cv=tscv)
    # lr = RidgeCV(cv=tscv)
 
    lr.fit(X_train_scaled, y_train)
    # plot_arg_importance(lr, X_train=X_train, img_filename="linear-cov.png")
 
    y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler)
 
    y = lr.predict(np.concatenate((X_train_scaled, X_test_scaled)))
    y_history = pd.concat([y_train, y_test])
 
    # intervals = calculate_intervals(lr, X_train, y_train, tscv, scale=interval_scale)
    intervals = calculate_intervals2(y_history, y, interval_scale)
 
    # anomalies_lower = y_history[y_history<y-intervals]
    # anomalies_upper = y_history[y_history>y+intervals]
    assert len(y_history.index) == len(y)
 
    return pd.Series(data=y, index=y_history.index, name="history_predict"), y_future, intervals
 
 
def get_anoms(y_real, y_predict, intervals, lower_ratio=1.0, upper_ratio=1.0):
    """
     calculat anomal point using predicted value and interval
    :param y_real:  real value (pandas.Series)
    :param y_predict: predicted value (pandas.Series)
    :param intervals:  upper and lower bound range (float)
    :param lower_ratio: lower ratio you want to scale
    :param upper_ratio:  upper ratio you want scale
    :return:
        anoms_lower, anoms_upper (pandas.Series)
    """
    anomalies_lower_index,anomalies_lower_val = [], []
    anomalies_upper_index,anomalies_upper_val = [], []
    for timestamp, expect_val in zip(y_predict.index, y_predict.values):
        real_val = y_real.loc[timestamp]
        if (expect_val-intervals) * lower_ratio > real_val:
            anomalies_lower_index.append(timestamp)
            anomalies_lower_val.append(real_val)
        if (expect_val+intervals) * upper_ratio < real_val:
            anomalies_upper_index.append(timestamp)
            anomalies_upper_val.append(real_val)
    return pd.Series(data=anomalies_lower_val, index=anomalies_lower_index),\
           pd.Series(data=anomalies_upper_val, index=anomalies_upper_index)
 
 
def plot_history_and_future(y_predict, y_real, intervals, anomalies_lower, anomalies_upper, predicted_future, img_filename, need_lower=True):
    """
        Plots modelled vs fact values, prediction intervals and anomalies
    """
    assert len(y_predict) < len(y_real)
    plt.figure(figsize=(15, 7))
 
    plt.plot(y_predict.index, y_predict.values, ls='-', c='#0072B2', label='predicted y')
    plt.plot(y_real.index, y_real.values, 'k.', label='y')
    if need_lower:
        plt.fill_between(y_predict.index, y_predict.values - intervals, y_predict.values + intervals, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    else:
        plt.fill_between(y_predict.index, 0, y_predict.values + intervals, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
 
    plt.plot(predicted_future.index, predicted_future.values, 'y', label='predicted y')
    if need_lower:
        plt.fill_between(predicted_future.index, predicted_future.values-intervals, predicted_future.values+intervals,
                     color='#0072B2', alpha=0.2)
    else:
        plt.fill_between(predicted_future.index, 0, predicted_future.values+intervals,
                         color='#0072B2', alpha=0.2)
 
    if need_lower:
        plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
        plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
    else:
        plt.plot(anomalies_upper.index, anomalies_upper.values, "rX", label="abnormal points")
 
    error = mean_absolute_percentage_error(y_predict, y_real)
    plt.title("Mean absolute percentage error {0:.2f}%".format(error))
    plt.legend(loc="best")
    plt.tight_layout()
    plt.grid(True)
    plt.savefig(img_filename)
 
 
if __name__ == "__main__":
    data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
    # input format
    data['timestamp'] = pd.to_datetime(data['timestamp'])
    data = data.sort_values('timestamp')
    data.rename(columns={'count': 'y'}, inplace=True)
    data.set_index("timestamp", drop=False, inplace=True)
 
    y_predict, y_future, intervals = linear_predict(data, interval_scale=5, lag_start=60, lag_end=100, days_to_predict=3)
 
    anomalies_lower, anomalies_upper = get_anoms(data['y'], y_predict, intervals)
 
    plot_history_and_future(y_predict=y_predict, y_real=data['y'], intervals=intervals, anomalies_lower=anomalies_lower,
                            anomalies_upper=anomalies_upper, predicted_future=y_future, img_filename="linear.png", need_lower=True)  

修复了-1的问题:

1
for j in range(lag_end-1, lag_start, -1):

lag的bug。

 

此外使用梯度提升树模型做回归,目前看效果略好于其他模型,线性回归模型很健壮,但是在特殊情况下会出现网络流预测值为为负数的情形,根因还没有找到,而梯度提升树没有这个问题,但是GBT在数据平稳,预测应该是常数的时候会出现上升情形(线性回归也有这个问题,WHY???)。如下图所示数据情形:

 

posted @   bonelee  阅读(5644)  评论(11编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
点击右上角即可分享
微信分享提示