Intel daal4py demo运行过程
daal安装(记得先安装anaconda):
1 2 3 4 5 6 7 8 9 10 11 12 | git clone https: / / github.com / IntelPython / daal4py.git cd daal4py conda create - n DAAL4PY - c intel - c intel / label / test - c conda - forge python = 3.6 mpich cnc tbb - devel daal daal - include cython jinja2 numpy source activate DAAL4PY export CNCROOT = $CONDA_PREFIX export TBBROOT = $CONDA_PREFIX export DAALROOT = $CONDA_PREFIX python setup.py build_ext python setup.py install # 运行后面的demo source deactivate DAAL4PY # 退出 |
注意:安装过程较慢,耐心等待。
随机森林:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | #******************************************************************************* # Copyright 2014-2018 Intel Corporation # All Rights Reserved. # # This software is licensed under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************************* # daal4py Decision Forest Classification example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try : import pandas read_csv = lambda f, c: pandas.read_csv(f, usecols = c, delimiter = ',' , header = None , dtype = np.float32).values except : # fall back to numpy loadtxt read_csv = lambda f, c: np.loadtxt(f, usecols = c, delimiter = ',' , ndmin = 2 , dtype = np.float32) def main(): # input data file infile = "./data/batch/df_classification_train.csv" testfile = "./data/batch/df_classification_test.csv" # Configure a training object (5 classes) train_algo = d4p.decision_forest_classification_training( 5 , nTrees = 10 , minObservationsInLeafNode = 8 , featuresPerNode = 3 , engine = d4p.engines_mt19937(seed = 777 ), varImportance = 'MDI' , bootstrap = True , resultsToCompute = 'computeOutOfBagError' ) # Read data. Let's use 3 features per observation data = read_csv(infile, range ( 3 )) labels = read_csv(infile, range ( 3 , 4 )) train_result = train_algo.compute(data, labels) # Traiing result provides (depending on parameters) model, outOfBagError, outOfBagErrorPerObservation and/or variableImportance # Now let's do some prediction predict_algo = d4p.decision_forest_classification_prediction( 5 ) # read test data (with same #features) pdata = read_csv(testfile, range ( 3 )) plabels = read_csv(testfile, range ( 3 , 4 )) # now predict using the model from the training above predict_result = predict_algo.compute(pdata, train_result.model) # Prediction result provides prediction assert (predict_result.prediction.shape = = (pdata.shape[ 0 ], 1 )) return (train_result, predict_result, plabels) if __name__ = = "__main__" : (train_result, predict_result, plabels) = main() print ( "\nVariable importance results:\n" , train_result.variableImportance) print ( "\nOOB error:\n" , train_result.outOfBagError) print ( "\nDecision forest prediction results (first 10 rows):\n" , predict_result.prediction[ 0 : 10 ]) print ( "\nGround truth (first 10 rows):\n" , plabels[ 0 : 10 ]) print ( 'All looks good!' ) |
demo示例数据:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | 0.00125126 , 0.563585 , 8 , 2 , 0.193304 , 0.808741 , 12 , 1 , 0.585009 , 0.479873 , 6 , 1 , 0.350291 , 0.895962 , 13 , 4 , 0.82284 , 0.746605 , 11 , 2 , 0.174108 , 0.858943 , 12 , 0 , 0.710501 , 0.513535 , 10 , 2 , 0.303995 , 0.0149846 , 1 , 2 , 0.0914029 , 0.364452 , 4 , 0 , 0.147313 , 0.165899 , 0 , 4 , 0.988525 , 0.445692 , 7 , 2 , 0.119083 , 0.00466933 , 0 , 2 , 0.0089114 , 0.37788 , 4 , 2 , 0.531663 , 0.571184 , 10 , 3 , 0.601764 , 0.607166 , 10 , 4 , 0.166234 , 0.663045 , 8 , 4 , 0.450789 , 0.352123 , 5 , 3 , 0.0570391 , 0.607685 , 8 , 4 , 0.783319 , 0.802606 , 15 , 3 , 0.519883 , 0.30195 , 6 , 2 , 0.875973 , 0.726676 , 11 , 1 , 0.955901 , 0.925718 , 15 , 3 , 0.539354 , 0.142338 , 2 , 3 , 0.462081 , 0.235328 , 1 , 2 , 0.862239 , 0.209601 , 3 , 1 , 0.779656 , 0.843654 , 15 , 3 , 0.996796 , 0.999695 , 15 , 2 , 0.611499 , 0.392438 , 6 , 0 , 0.266213 , 0.297281 , 5 , 2 , 0.840144 , 0.0237434 , 3 , 1 , 0.375866 , 0.0926237 , 1 , 0 , 0.677206 , 0.0562151 , 2 , 3 , 0.00878933 , 0.91879 , 12 , 2 , 0.275887 , 0.272897 , 5 , 2 , 0.587909 , 0.691183 , 10 , 4 , 0.837611 , 0.726493 , 11 , 1 , 0.484939 , 0.205359 , 1 , 2 , 0.743736 , 0.468459 , 6 , 2 , 0.457961 , 0.949156 , 13 , 3 , 0.744438 , 0.10828 , 2 , 2 , 0.599048 , 0.385235 , 6 , 0 , 0.735008 , 0.608966 , 10 , 2 , 0.572405 , 0.361339 , 6 , 0 , 0.151555 , 0.225105 , 0 , 3 , 0.425153 , 0.802881 , 13 , 3 , |
计算均值 方差等统计特征:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | #******************************************************************************* # Copyright 2014-2018 Intel Corporation # All Rights Reserved. # # This software is licensed under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************************* # daal4py low order moments example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try : import pandas read_csv = lambda f, c: pandas.read_csv(f, usecols = c, delimiter = ',' , header = None , dtype = np.float64).values except : # fall back to numpy loadtxt read_csv = lambda f, c: np.loadtxt(f, usecols = c, delimiter = ',' , ndmin = 2 ) def main(): # read data from file file = "./data/batch/covcormoments_dense.csv" data = read_csv( file , range ( 10 )) # compute alg = d4p.low_order_moments() res = alg.compute(data) # result provides minimum, maximum, sum, sumSquares, sumSquaresCentered, # mean, secondOrderRawMoment, variance, standardDeviation, variation assert res.minimum.shape = = ( 1 , data.shape[ 1 ]) assert res.maximum.shape = = ( 1 , data.shape[ 1 ]) assert res. sum .shape = = ( 1 , data.shape[ 1 ]) assert res.sumSquares.shape = = ( 1 , data.shape[ 1 ]) assert res.sumSquaresCentered.shape = = ( 1 , data.shape[ 1 ]) assert res.mean.shape = = ( 1 , data.shape[ 1 ]) assert res.secondOrderRawMoment.shape = = ( 1 , data.shape[ 1 ]) assert res.variance.shape = = ( 1 , data.shape[ 1 ]) assert res.standardDeviation.shape = = ( 1 , data.shape[ 1 ]) assert res.variation.shape = = ( 1 , data.shape[ 1 ]) return res if __name__ = = "__main__" : res = main() # print results print ( "\nMinimum:\n" , res.minimum) print ( "\nMaximum:\n" , res.maximum) print ( "\nSum:\n" , res. sum ) print ( "\nSum of squares:\n" , res.sumSquares) print ( "\nSum of squared difference from the means:\n" , res.sumSquaresCentered) print ( "\nMean:\n" , res.mean) print ( "\nSecond order raw moment:\n" , res.secondOrderRawMoment) print ( "\nVariance:\n" , res.variance) print ( "\nStandard deviation:\n" , res.standardDeviation) print ( "\nVariation:\n" , res.variation) print ( 'All looks good!' ) |
标签:
python
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-10-31 查看spark是否有僵尸进程,有的话,先杀掉。可以使用下面命令