Intel daal4py demo运行过程

daal安装(记得先安装anaconda):

1
2
3
4
5
6
7
8
9
10
11
12
git clone https://github.com/IntelPython/daal4py.git
cd daal4py
conda create -n DAAL4PY -c intel -c intel/label/test -c conda-forge python=3.6 mpich cnc tbb-devel daal daal-include cython jinja2 numpy
source activate DAAL4PY
export CNCROOT=$CONDA_PREFIX
export TBBROOT=$CONDA_PREFIX
export DAALROOT=$CONDA_PREFIX
python setup.py build_ext
python setup.py install
# 运行后面的demo
 
source deactivate DAAL4PY # 退出

 注意:安装过程较慢,耐心等待。

 

随机森林:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#*******************************************************************************
# Copyright 2014-2018 Intel Corporation
# All Rights Reserved.
#
# This software is licensed under the Apache License, Version 2.0 (the
# "License"), the following terms apply:
#
# You may not use this file except in compliance with the License.  You may
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and
# limitations under the License.
#*******************************************************************************
 
# daal4py Decision Forest Classification example for shared memory systems
 
import daal4py as d4p
import numpy as np
 
# let's try to use pandas' fast csv reader
try:
    import pandas
    read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float32).values
except:
    # fall back to numpy loadtxt
    read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=np.float32)
 
 
def main():
    # input data file
    infile = "./data/batch/df_classification_train.csv"
    testfile = "./data/batch/df_classification_test.csv"
 
    # Configure a training object (5 classes)
    train_algo = d4p.decision_forest_classification_training(5, nTrees=10, minObservationsInLeafNode=8, featuresPerNode=3, engine = d4p.engines_mt19937(seed=777),
                                                             varImportance='MDI', bootstrap=True, resultsToCompute='computeOutOfBagError')
     
    # Read data. Let's use 3 features per observation
    data   = read_csv(infile, range(3))
    labels = read_csv(infile, range(3,4))
    train_result = train_algo.compute(data, labels)
    # Traiing result provides (depending on parameters) model, outOfBagError, outOfBagErrorPerObservation and/or variableImportance
 
    # Now let's do some prediction
    predict_algo = d4p.decision_forest_classification_prediction(5)
    # read test data (with same #features)
    pdata = read_csv(testfile, range(3))
    plabels = read_csv(testfile, range(3,4))
    # now predict using the model from the training above
    predict_result = predict_algo.compute(pdata, train_result.model)
 
    # Prediction result provides prediction
    assert(predict_result.prediction.shape == (pdata.shape[0], 1))
 
    return (train_result, predict_result, plabels)
 
 
if __name__ == "__main__":
    (train_result, predict_result, plabels) = main()
    print("\nVariable importance results:\n", train_result.variableImportance)
    print("\nOOB error:\n", train_result.outOfBagError)
    print("\nDecision forest prediction results (first 10 rows):\n", predict_result.prediction[0:10])
    print("\nGround truth (first 10 rows):\n", plabels[0:10])
    print('All looks good!')

 demo示例数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
0.00125126,0.563585,8,2,
0.193304,0.808741,12,1,
0.585009,0.479873,6,1,
0.350291,0.895962,13,4,
0.82284,0.746605,11,2,
0.174108,0.858943,12,0,
0.710501,0.513535,10,2,
0.303995,0.0149846,1,2,
0.0914029,0.364452,4,0,
0.147313,0.165899,0,4,
0.988525,0.445692,7,2,
0.119083,0.00466933,0,2,
0.0089114,0.37788,4,2,
0.531663,0.571184,10,3,
0.601764,0.607166,10,4,
0.166234,0.663045,8,4,
0.450789,0.352123,5,3,
0.0570391,0.607685,8,4,
0.783319,0.802606,15,3,
0.519883,0.30195,6,2,
0.875973,0.726676,11,1,
0.955901,0.925718,15,3,
0.539354,0.142338,2,3,
0.462081,0.235328,1,2,
0.862239,0.209601,3,1,
0.779656,0.843654,15,3,
0.996796,0.999695,15,2,
0.611499,0.392438,6,0,
0.266213,0.297281,5,2,
0.840144,0.0237434,3,1,
0.375866,0.0926237,1,0,
0.677206,0.0562151,2,3,
0.00878933,0.91879,12,2,
0.275887,0.272897,5,2,
0.587909,0.691183,10,4,
0.837611,0.726493,11,1,
0.484939,0.205359,1,2,
0.743736,0.468459,6,2,
0.457961,0.949156,13,3,
0.744438,0.10828,2,2,
0.599048,0.385235,6,0,
0.735008,0.608966,10,2,
0.572405,0.361339,6,0,
0.151555,0.225105,0,3,
0.425153,0.802881,13,3,

 

 

计算均值 方差等统计特征:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#*******************************************************************************
 
# Copyright 2014-2018 Intel Corporation
 
# All Rights Reserved.
 
#
 
# This software is licensed under the Apache License, Version 2.0 (the
 
# "License"), the following terms apply:
 
#
 
# You may not use this file except in compliance with the License.  You may
 
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
 
#
 
# Unless required by applicable law or agreed to in writing, software
 
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
#
 
# See the License for the specific language governing permissions and
 
# limitations under the License.
 
#*******************************************************************************
 
 
 
# daal4py low order moments example for shared memory systems
 
 
 
import daal4py as d4p
 
import numpy as np
 
 
 
# let's try to use pandas' fast csv reader
 
try:
 
    import pandas
 
    read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float64).values
 
except:
 
    # fall back to numpy loadtxt
 
    read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2)
 
 
 
 
 
def main():
 
    # read data from file
 
    file = "./data/batch/covcormoments_dense.csv"
 
    data = read_csv(file, range(10))
 
 
 
    # compute
 
    alg = d4p.low_order_moments()
 
    res = alg.compute(data)
 
 
 
    # result provides minimum, maximum, sum, sumSquares, sumSquaresCentered,
 
    # mean, secondOrderRawMoment, variance, standardDeviation, variation
 
    assert res.minimum.shape == (1, data.shape[1])
 
    assert res.maximum.shape == (1, data.shape[1])
 
    assert res.sum.shape == (1, data.shape[1])
 
    assert res.sumSquares.shape == (1, data.shape[1])
 
    assert res.sumSquaresCentered.shape == (1, data.shape[1])
 
    assert res.mean.shape == (1, data.shape[1])
 
    assert res.secondOrderRawMoment.shape == (1, data.shape[1])
 
    assert res.variance.shape == (1, data.shape[1])
 
    assert res.standardDeviation.shape == (1, data.shape[1])
 
    assert res.variation.shape == (1, data.shape[1])
 
 
 
    return res
 
 
 
 
 
if __name__ == "__main__":
 
    res = main()
 
    # print results
 
    print("\nMinimum:\n", res.minimum)
 
    print("\nMaximum:\n", res.maximum)
 
    print("\nSum:\n", res.sum)
 
    print("\nSum of squares:\n", res.sumSquares)
 
    print("\nSum of squared difference from the means:\n", res.sumSquaresCentered)
 
    print("\nMean:\n", res.mean)
 
    print("\nSecond order raw moment:\n", res.secondOrderRawMoment)
 
    print("\nVariance:\n", res.variance)
 
    print("\nStandard deviation:\n", res.standardDeviation)
 
    print("\nVariation:\n", res.variation)
 
    print('All looks good!')

 

posted @   bonelee  阅读(723)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-10-31 查看spark是否有僵尸进程,有的话,先杀掉。可以使用下面命令
点击右上角即可分享
微信分享提示