python daal test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | import os import sys from daal.algorithms import low_order_moments from daal.data_management import FileDataSource, DataSourceIface from daal.data_management import (readOnly, NumericTableIface, BlockDescriptor, BlockDescriptor_Float32, BlockDescriptor_Intc, packed_mask) #utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) #if utils_folder not in sys.path: # sys.path.insert(0, utils_folder) #from utils import printNumericTable dataFileName = 'covcormoments_dense.csv' def getArrayFromNumericTable(data_table): num_rows = data_table.getNumberOfRows() num_cols = data_table.getNumberOfColumns() layout = data_table.getDataLayout() data_table_dict = data_table.getDictionary() try : # see # https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_cpp_api/data__utils_8h_source.htm # for numeral values of types data_type = data_table_dict[ 0 ].indexType except : data_type = 1 # default to Float64 if data_type = = 0 : block = BlockDescriptor_Float32() elif data_type in [ 2 , 4 , 6 , 8 ]: block = BlockDescriptor_Intc() else : block = BlockDescriptor() # Use Float64 by default data_table.getBlockOfRows( 0 , num_rows, readOnly, block) retValue = block.getArray() data_table.releaseBlockOfRows(block) return retValue def printResults(res): mi = getArrayFromNumericTable(res.get(low_order_moments.minimum)) print (value of minimum:) print (mi) # print(res.get(low_order_moments.minimum)) # print(res.get(low_order_moments.minimum)) # print(res.get(low_order_moments.maximum)) # print(res.get(low_order_moments.sum)) # print(res.get(low_order_moments.sumSquares)) # print(res.get(low_order_moments.sumSquaresCentered)) # print(res.get(low_order_moments.mean)) # print(res.get(low_order_moments.secondOrderRawMoment)) # print(res.get(low_order_moments.variance)) # print(res.get(low_order_moments.standardDeviation)) # print(res.get(low_order_moments.variation)) if __name__ = = "__main__" : # Initialize FileDataSource to retrieve input data from .csv file dataSource = FileDataSource( dataFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Retrieve the data from input file dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode algorithm = low_order_moments.Batch() # Set input arguments of the algorithm algorithm. input . set (low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments res = algorithm.compute() printResults(res) |
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步