使用SAE(VAE)检测信用卡欺诈——感觉误报率还是比较高啊 70%+误报 蛋疼

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from unzip_utils import unzip
import numpy as np
import tflearn
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import pandas as pd
import zipfile
from sklearn.metrics import average_precision_score, recall_score, precision_score, f1_score
 
 
def unzip(path_to_zip_file, directory_to_extract_to):
    zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')
    zip_ref.extractall(directory_to_extract_to)
    zip_ref.close()
 
 
def report_evaluation_metrics(y_true, y_pred):
    average_precision = average_precision_score(y_true, y_pred)
    precision = precision_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    recall = recall_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    f1 = f1_score(y_true, y_pred, labels=[0, 1], pos_label=1)
 
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))
    print('Precision: {0:0.2f}'.format(precision))
    print('Recall: {0:0.2f}'.format(recall))
    print('F1: {0:0.2f}'.format(f1))
 
LABELS = ["Normal", "Fraud"]
 
 
def plot_confusion_matrix(y_true, y_pred):
    conf_matrix = confusion_matrix(y_true, y_pred)
 
    plt.figure(figsize=(12, 12))
    sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d")
    plt.title("Confusion matrix")
    plt.ylabel('True class')
    plt.xlabel('Predicted class')
    plt.show()
 
 
def plot_training_history(history):
    if history is None:
        return
    plt.plot(history['loss'])
    plt.plot(history['val_loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper right')
    plt.show()
 
 
def visualize_anomaly(y_true, reconstruction_error, threshold):
    error_df = pd.DataFrame({'reconstruction_error': reconstruction_error,
                             'true_class': y_true})
    print(error_df.describe())
 
    groups = error_df.groupby('true_class')
    fig, ax = plt.subplots()
 
    for name, group in groups:
        ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='',
                label="Fraud" if name == 1 else "Normal")
 
    ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
    ax.legend()
    plt.title("Reconstruction error for different classes")
    plt.ylabel("Reconstruction error")
    plt.xlabel("Data point index")
    plt.show()
 
 
def visualize_reconstruction_error(reconstruction_error, threshold):
    plt.plot(reconstruction_error, marker='o', ms=3.5, linestyle='',
             label='Point')
 
    plt.hlines(threshold, xmin=0, xmax=len(reconstruction_error)-1, colors="r", zorder=100, label='Threshold')
    plt.legend()
    plt.title("Reconstruction error")
    plt.ylabel("Reconstruction error")
    plt.xlabel("Data point index")
    plt.show()
 
 
 
def preprocess_data(csv_data):
    credit_card_data = csv_data.drop(labels=['Class', 'Time'], axis=1)
    credit_card_data['Amount'] = StandardScaler().fit_transform(credit_card_data['Amount'].values.reshape(-1, 1))
    # print(credit_card_data.head())
    credit_card_np_data = credit_card_data.as_matrix()
    y_true = csv_data['Class'].as_matrix()
    return credit_card_np_data, y_true
 
 
def main():
    seed = 42
    np.random.seed(seed)
 
    data_dir_path = './data'
    model_dir_path = './models'
 
    unzip(data_dir_path + '/creditcardfraud.zip', data_dir_path)
    csv_data = pd.read_csv(data_dir_path + '/creditcard.csv')
    estimated_negative_sample_ratio = 1 - csv_data['Class'].sum() / csv_data['Class'].count()
    print(estimated_negative_sample_ratio)
    X, Y = preprocess_data(csv_data)
    print("sample data: X:{} Y:{}".format(X[:3], Y[:3]))
    print(X.shape)
 
    # detect anomaly for the test data
    Ypred = []
    _, testX, _, testY = train_test_split(X, Y, test_size=0.2, random_state=seed)
 
    blackY_indices = np.where(Y)[0]
    print(blackY_indices[:3], "sample fraud credit data")
    assert Y[blackY_indices[0]]
    assert Y[blackY_indices[-1]]
 
 
    # X, Y, testX, testY = mnist.load_data(one_hot=True)
 
    # Params
    original_dim = len(X[0]) # MNIST images are 28x28 pixels
    print("dim: {}".format(original_dim))
 
    # Building the encoder
    encoder = tflearn.input_data(shape=[None, original_dim])
    encoder = tflearn.fully_connected(encoder, 8)
    encoder = tflearn.fully_connected(encoder, 4)
 
    # Building the decoder
    decoder = tflearn.fully_connected(encoder, 8)
    decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid')
 
    # Regression, with mean square error
    net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001,
                             loss='mean_square', metric=None)
 
    # Training the auto encoder
    training_model = tflearn.DNN(net, tensorboard_verbose=0)
    training_model.fit(X, X, n_epoch=100, validation_set=(testX, testX),
              run_id="auto_encoder", batch_size=256)
 
    """
    hidden_dim = 4 #original_dim//2
    latent_dim = 2
 
    # Building the encoder
    encoder = tflearn.input_data(shape=[None, original_dim], name='input_data')
    encoder = tflearn.fully_connected(encoder, hidden_dim, activation='relu')
    z_mean = tflearn.fully_connected(encoder, latent_dim)
    z_std = tflearn.fully_connected(encoder, latent_dim)
 
    # Sampler: Normal (gaussian) random distribution
    eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0,
                           name='epsilon')
    z = z_mean + tf.exp(z_std / 2) * eps
 
    # Building the decoder (with scope to re-use these layers later)
    decoder = tflearn.fully_connected(z, hidden_dim, activation='relu',
                                      scope='decoder_h')
    decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
                                      scope='decoder_out')
 
    # Define VAE Loss
    def vae_loss(x_reconstructed, x_true):
        # Reconstruction loss
        encode_decode_loss = x_true * tf.log(1e-10 + x_reconstructed) \
                             + (1 - x_true) * tf.log(1e-10 + 1 - x_reconstructed)
        encode_decode_loss = -tf.reduce_sum(encode_decode_loss, 1)
        # KL Divergence loss
        kl_div_loss = 1 + z_std - tf.square(z_mean) - tf.exp(z_std)
        kl_div_loss = -0.5 * tf.reduce_sum(kl_div_loss, 1)
        return tf.reduce_mean(encode_decode_loss + kl_div_loss)
 
    net = tflearn.regression(decoder, optimizer='rmsprop', learning_rate=0.001,
                             loss=vae_loss, metric=None, name='target_out')
 
    # We will need 2 models, one for training that will learn the latent
    # representation, and one that can take random normal noise as input and
    # use the decoder part of the network to generate an image
 
    # Train the VAE
    training_model = tflearn.DNN(net, tensorboard_verbose=0)
    training_model.fit({'input_data': X}, {'target_out': X}, n_epoch=10,
                       validation_set=(testX, testX), batch_size=256, run_id="vae")
 
    # Build an image generator (re-using the decoding layers)
    # Input data is a normal (gaussian) random distribution (with dim = latent_dim)
    # input_noise = tflearn.input_data(shape=[None, latent_dim], name='input_noise')
    # decoder = tflearn.fully_connected(input_noise, hidden_dim, activation='relu',
    #                                   scope='decoder_h', reuse=True)
    # decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
    #                                   scope='decoder_out', reuse=True)
    # just for generate new data
    # generator_model = tflearn.DNN(decoder, session=training_model.session)
    """
    print("training sample predict:")
    print(training_model.predict(X[:3]))
 
    # pred_x_test = training_model.predict(testX)
 
    reconstruction_error = []
    anomaly_information,adjusted_threshold = get_anomaly(training_model, X, estimated_negative_sample_ratio)
    tp = fp = tn = fn = 0
    blackY_indices = set(blackY_indices)
    for idx, (is_anomaly, dist) in enumerate(anomaly_information):
        predicted_label = 1 if is_anomaly else 0
        if is_anomaly:
            if idx in blackY_indices:
                tp += 1
            else:
                fp += 1
        else:
            if idx in blackY_indices:
                fn += 1
            else:
                tn += 1
        Ypred.append(predicted_label)
        reconstruction_error.append(dist)
 
    print("blackY_indices len:{} detectd cnt:{}, true attack cnt:{}".format(len(blackY_indices), tp+fn, tp))
    precision = float(tp) / (tp + fp)
    hit_rate = float(tp) / (tp + fn)
    accuracy = float(tp + tn) / (tp + tn + fp + fn)
    print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy))
 
 
    report_evaluation_metrics(Y, Ypred)
    # plot_training_history(history)
    visualize_anomaly(Y, reconstruction_error, adjusted_threshold)
    plot_confusion_matrix(Y, Ypred)
 
 
def get_anomaly(model, data, estimated_negative_sample_ratio):
    target_data = model.predict(data)
    scores = np.linalg.norm(data - target_data, axis=-1)
    scores2 = np.array(scores)
    """
    np.linalg.norm(np.array([[1,1,1],[2,2,2]])-np.array([[0,0,0],[0,0,0]]),axis=-1)
    array([1.73205081, 3.46410162])
    >>> 3.46*3.46
    11.9716
    """
    scores.sort()
    cut_point = int(estimated_negative_sample_ratio * len(scores))
    threshold = scores[cut_point]
    print('estimated threshold is ' + str(threshold))
    return zip(scores2 >= threshold, scores2), threshold
 
 
if __name__ == '__main__':
    main()

 效果图:

 

使用VAE的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from unzip_utils import unzip
import numpy as np
import tensorflow as tf
import tflearn
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import pandas as pd
import zipfile
from sklearn.metrics import average_precision_score, recall_score, precision_score, f1_score
 
 
def unzip(path_to_zip_file, directory_to_extract_to):
    zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')
    zip_ref.extractall(directory_to_extract_to)
    zip_ref.close()
 
 
def report_evaluation_metrics(y_true, y_pred):
    average_precision = average_precision_score(y_true, y_pred)
    precision = precision_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    recall = recall_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    f1 = f1_score(y_true, y_pred, labels=[0, 1], pos_label=1)
 
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))
    print('Precision: {0:0.2f}'.format(precision))
    print('Recall: {0:0.2f}'.format(recall))
    print('F1: {0:0.2f}'.format(f1))
 
LABELS = ["Normal", "Fraud"]
 
 
def plot_confusion_matrix(y_true, y_pred):
    conf_matrix = confusion_matrix(y_true, y_pred)
 
    plt.figure(figsize=(12, 12))
    sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d")
    plt.title("Confusion matrix")
    plt.ylabel('True class')
    plt.xlabel('Predicted class')
    plt.show()
 
 
def plot_training_history(history):
    if history is None:
        return
    plt.plot(history['loss'])
    plt.plot(history['val_loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper right')
    plt.show()
 
 
def visualize_anomaly(y_true, reconstruction_error, threshold):
    error_df = pd.DataFrame({'reconstruction_error': reconstruction_error,
                             'true_class': y_true})
    print(error_df.describe())
 
    groups = error_df.groupby('true_class')
    fig, ax = plt.subplots()
 
    for name, group in groups:
        ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='',
                label="Fraud" if name == 1 else "Normal")
 
    ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
    ax.legend()
    plt.title("Reconstruction error for different classes")
    plt.ylabel("Reconstruction error")
    plt.xlabel("Data point index")
    plt.show()
 
 
def visualize_reconstruction_error(reconstruction_error, threshold):
    plt.plot(reconstruction_error, marker='o', ms=3.5, linestyle='',
             label='Point')
 
    plt.hlines(threshold, xmin=0, xmax=len(reconstruction_error)-1, colors="r", zorder=100, label='Threshold')
    plt.legend()
    plt.title("Reconstruction error")
    plt.ylabel("Reconstruction error")
    plt.xlabel("Data point index")
    plt.show()
 
 
 
def preprocess_data(csv_data):
    credit_card_data = csv_data.drop(labels=['Class', 'Time'], axis=1)
    credit_card_data['Amount'] = StandardScaler().fit_transform(credit_card_data['Amount'].values.reshape(-1, 1))
    # print(credit_card_data.head())
    credit_card_np_data = credit_card_data.as_matrix()
    y_true = csv_data['Class'].as_matrix()
    return credit_card_np_data, y_true
 
 
# encoder
def encode(input_x, encoder_hidden_dim, latent_dim):
    """
    # keras
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
    """
    encoder = tflearn.fully_connected(input_x, encoder_hidden_dim, activation='relu')
    mu_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
    logvar_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
    return mu_encoder, logvar_encoder
 
 
# decoder
def decode(z, decoder_hidden_dim, input_dim):
    """
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)
    """
    decoder = tflearn.fully_connected(z, decoder_hidden_dim, activation='relu')
    x_hat = tflearn.fully_connected(decoder, input_dim, activation='linear')
    return x_hat
 
 
# sampler
def sample(mu, logvar):
    """
    keras
    z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
    # reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon
    """
    epsilon = tf.random_normal(tf.shape(logvar), dtype=tf.float32, name='epsilon')
    # std_encoder = tf.exp(tf.mul(0.5, logvar))
    # z = tf.add(mu, tf.mul(std_encoder, epsilon))
    z = mu + tf.exp(logvar/2) * epsilon
    return z
 
 
# loss function(regularization)
def calculate_regularization_loss(mu, logvar):
    kl_divergence = -0.5 * tf.reduce_sum(1 + logvar - tf.square(mu) - tf.exp(logvar), reduction_indices=1)
    return kl_divergence
 
 
# loss function(reconstruction)
def calculate_reconstruction_loss(x_hat, input_x):
    mse = tflearn.objectives.mean_square(x_hat, input_x)
    return mse
 
 
def main():
    seed = 42
    np.random.seed(seed)
 
    data_dir_path = './data'
    model_dir_path = './models'
 
    unzip(data_dir_path + '/creditcardfraud.zip', data_dir_path)
    csv_data = pd.read_csv(data_dir_path + '/creditcard.csv')
    estimated_negative_sample_ratio = 1 - csv_data['Class'].sum() / csv_data['Class'].count()
    print(estimated_negative_sample_ratio)
    X, Y = preprocess_data(csv_data)
    print("sample data: X:{} Y:{}".format(X[:3], Y[:3]))
    print(X.shape)
 
    # detect anomaly for the test data
    Ypred = []
    _, testX, _, testY = train_test_split(X, Y, test_size=0.2, random_state=seed)
 
    blackY_indices = np.where(Y)[0]
    print(blackY_indices[:3], "sample fraud credit data")
    assert Y[blackY_indices[0]]
    assert Y[blackY_indices[-1]]
 
 
    # X, Y, testX, testY = mnist.load_data(one_hot=True)
 
    # Params
    original_dim = len(X[0]) # MNIST images are 28x28 pixels
    print("dim: {}".format(original_dim))
 
    """
    # Building the encoder
    encoder = tflearn.input_data(shape=[None, original_dim])
    encoder = tflearn.fully_connected(encoder, 8)
    encoder = tflearn.fully_connected(encoder, 4)
 
    # Building the decoder
    decoder = tflearn.fully_connected(encoder, 8)
    decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid')
 
    # Regression, with mean square error
    net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001,
                             loss='mean_square', metric=None)
 
    # Training the auto encoder
    training_model = tflearn.DNN(net, tensorboard_verbose=0)
    training_model.fit(X, X, n_epoch=100, validation_set=(testX, testX),
              run_id="auto_encoder", batch_size=256)
 
    """
    hidden_dim = 8 #original_dim//2
    latent_dim = 4
    input_x = tflearn.input_data(shape=(None, original_dim), name='input_x')
    mu, logvar = encode(input_x, hidden_dim, latent_dim)
    z = sample(mu, logvar)
    x_hat = decode(z, hidden_dim, original_dim)
 
    regularization_loss = calculate_regularization_loss(mu, logvar)
    reconstruction_loss = calculate_reconstruction_loss(x_hat, input_x)
    target = tf.reduce_mean(tf.add(regularization_loss, reconstruction_loss))
 
    net = tflearn.regression(x_hat, optimizer='rmsprop', learning_rate=0.001,
                             loss=target, metric=None, name='target_out')
 
    # We will need 2 models, one for training that will learn the latent
    # representation, and one that can take random normal noise as input and
    # use the decoder part of the network to generate an image
 
    # Train the VAE
    training_model = tflearn.DNN(net, tensorboard_verbose=0)
    training_model.fit({'input_x': X}, {'target_out': X}, n_epoch=30,
                       validation_set=(testX, testX), batch_size=256, run_id="vae")
 
 
    """
    # Build an image generator (re-using the decoding layers)
    # Input data is a normal (gaussian) random distribution (with dim = latent_dim)
    # input_noise = tflearn.input_data(shape=[None, latent_dim], name='input_noise')
    # decoder = tflearn.fully_connected(input_noise, hidden_dim, activation='relu',
    #                                   scope='decoder_h', reuse=True)
    # decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
    #                                   scope='decoder_out', reuse=True)
    # just for generate new data
    # generator_model = tflearn.DNN(decoder, session=training_model.session)
    """
 
    print("training sample predict:")
    print(training_model.predict(X[:3]))
 
    # pred_x_test = training_model.predict(testX)
 
    reconstruction_error = []
    anomaly_information,adjusted_threshold = get_anomaly(training_model, X, estimated_negative_sample_ratio)
    tp = fp = tn = fn = 0
    blackY_indices = set(blackY_indices)
    for idx, (is_anomaly, dist) in enumerate(anomaly_information):
        predicted_label = 1 if is_anomaly else 0
        if is_anomaly:
            if idx in blackY_indices:
                tp += 1
            else:
                fp += 1
        else:
            if idx in blackY_indices:
                fn += 1
            else:
                tn += 1
        Ypred.append(predicted_label)
        reconstruction_error.append(dist)
 
    print("blackY_indices len:{} detectd cnt:{}, true attack cnt:{}".format(len(blackY_indices), tp+fn, tp))
    precision = float(tp) / (tp + fp)
    hit_rate = float(tp) / (tp + fn)
    accuracy = float(tp + tn) / (tp + tn + fp + fn)
    print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy))
 
 
    report_evaluation_metrics(Y, Ypred)
    # plot_training_history(history)
    visualize_anomaly(Y, reconstruction_error, adjusted_threshold)
    plot_confusion_matrix(Y, Ypred)
 
 
def get_anomaly(model, data, estimated_negative_sample_ratio):
    target_data = model.predict(data)
    scores = np.linalg.norm(data - target_data, axis=-1)
    scores2 = np.array(scores)
    """
    np.linalg.norm(np.array([[1,1,1],[2,2,2]])-np.array([[0,0,0],[0,0,0]]),axis=-1)
    array([1.73205081, 3.46410162])
    >>> 3.46*3.46
    11.9716
    """
    scores.sort()
    cut_point = int(estimated_negative_sample_ratio * len(scores))
    threshold = scores[cut_point]
    print('estimated threshold is ' + str(threshold))
    return zip(scores2 >= threshold, scores2), threshold
 
 
if __name__ == '__main__':
    main()

 

posted @   bonelee  阅读(814)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
历史上的今天:
2017-10-26 linux命令 — lsof 查看进程打开那些文件 或者 查看文件给那个进程使用
点击右上角即可分享
微信分享提示