• 博客园logo
  • 会员
  • 周边
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
将者,智、信、仁、勇、严也。
Hi,我是李智华,华为-安全AI算法专家,欢迎来到安全攻防对抗的有趣世界。
博客园    首页    新随笔    联系   管理    订阅  订阅

Intel DAAL AI加速——神经网络

# file: neural_net_dense_batch.py
#===============================================================================
# Copyright 2014-2018 Intel Corporation.
#
# This software and the related documents are Intel copyrighted  materials,  and
# your use of  them is  governed by the  express license  under which  they were
# provided to you (License).  Unless the License provides otherwise, you may not
# use, modify, copy, publish, distribute,  disclose or transmit this software or
# the related documents without Intel's prior written permission.
#
# This software and the related documents  are provided as  is,  with no express
# or implied  warranties,  other  than those  that are  expressly stated  in the
# License.
#===============================================================================

#
# !  Content:
# !    Python example of neural network training and scoring
# !*****************************************************************************

#
## <a name="DAAL-EXAMPLE-PY-NEURAL_NET_DENSE_BATCH"></a>
## \example neural_net_dense_batch.py
#

import os
import sys

import numpy as np

from daal.algorithms.neural_networks import initializers
from daal.algorithms.neural_networks import layers
from daal.algorithms import optimization_solver
from daal.algorithms.neural_networks import training, prediction
from daal.data_management import NumericTable, HomogenNumericTable

utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printTensors, readTensorFromCSV

# Input data set parameters
trainDatasetFile = os.path.join("..", "data", "batch", "neural_network_train.csv")
trainGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_train_ground_truth.csv")
testDatasetFile = os.path.join("..", "data", "batch", "neural_network_test.csv")
testGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_test_ground_truth.csv")

fc1 = 0
fc2 = 1
sm1 = 2

batchSize = 10

def configureNet():
    # Create layers of the neural network
    # Create fully-connected layer and initialize layer parameters
    fullyConnectedLayer1 = layers.fullyconnected.Batch(5)
    fullyConnectedLayer1.parameter.weightsInitializer = initializers.uniform.Batch(-0.001, 0.001)
    fullyConnectedLayer1.parameter.biasesInitializer = initializers.uniform.Batch(0, 0.5)

    # Create fully-connected layer and initialize layer parameters
    fullyConnectedLayer2 = layers.fullyconnected.Batch(2)
    fullyConnectedLayer2.parameter.weightsInitializer = initializers.uniform.Batch(0.5, 1)
    fullyConnectedLayer2.parameter.biasesInitializer = initializers.uniform.Batch(0.5, 1)

    # Create softmax layer and initialize layer parameters
    softmaxCrossEntropyLayer = layers.loss.softmax_cross.Batch()

    # Create configuration of the neural network with layers
    topology = training.Topology()

    # Add layers to the topology of the neural network
    topology.push_back(fullyConnectedLayer1)
    topology.push_back(fullyConnectedLayer2)
    topology.push_back(softmaxCrossEntropyLayer)
    topology.get(fc1).addNext(fc2)
    topology.get(fc2).addNext(sm1)
    return topology


def trainModel():
    # Read training data set from a .csv file and create a tensor to store input data
    trainingData = readTensorFromCSV(trainDatasetFile)
    trainingGroundTruth = readTensorFromCSV(trainGroundTruthFile, True)

    sgdAlgorithm = optimization_solver.sgd.Batch(fptype=np.float32)

    # Set learning rate for the optimization solver used in the neural network
    learningRate = 0.001
    sgdAlgorithm.parameter.learningRateSequence = HomogenNumericTable(1, 1, NumericTable.doAllocate, learningRate)
    # Set the batch size for the neural network training
    sgdAlgorithm.parameter.batchSize = batchSize
    sgdAlgorithm.parameter.nIterations = int(trainingData.getDimensionSize(0) / sgdAlgorithm.parameter.batchSize)

    # Create an algorithm to train neural network
    net = training.Batch(sgdAlgorithm)

    sampleSize = trainingData.getDimensions()
    sampleSize[0] = batchSize

    # Configure the neural network
    topology = configureNet()
    net.initialize(sampleSize, topology)

    # Pass a training data set and dependent values to the algorithm
    net.input.setInput(training.data, trainingData)
    net.input.setInput(training.groundTruth, trainingGroundTruth)

    # Run the neural network training and retrieve training model
    trainingModel = net.compute().get(training.model)
    # return prediction model
    return trainingModel.getPredictionModel_Float32()


def testModel(predictionModel):
    # Read testing data set from a .csv file and create a tensor to store input data
    predictionData = readTensorFromCSV(testDatasetFile)

    # Create an algorithm to compute the neural network predictions
    net = prediction.Batch()

    net.parameter.batchSize = predictionData.getDimensionSize(0)

    # Set input objects for the prediction neural network
    net.input.setModelInput(prediction.model, predictionModel)
    net.input.setTensorInput(prediction.data, predictionData)

    # Run the neural network prediction
    # and return results of the neural network prediction
    return net.compute()


def printResults(predictionResult):
    # Read testing ground truth from a .csv file and create a tensor to store the data
    predictionGroundTruth = readTensorFromCSV(testGroundTruthFile)

    printTensors(predictionGroundTruth, predictionResult.getResult(prediction.prediction),
                 "Ground truth", "Neural network predictions: each class probability",
                 "Neural network classification results (first 20 observations):", 20)


topology = ""
if __name__ == "__main__":

    predictionModel = trainModel()

    predictionResult = testModel(predictionModel)

    printResults(predictionResult)

  目前支持的Layers:

    • Common Parameters
    • Fully Connected Forward Layer
    • Fully Connected Backward Layer
    • Absolute Value ForwardLayer
    • Absolute Value Backward Layer
    • Logistic ForwardLayer
    • Logistic BackwardLayer
    • pReLU ForwardLayer
    • pReLU BackwardLayer
    • ReLU Forward Layer
    • ReLU BackwardLayer
    • SmoothReLU ForwardLayer
    • SmoothReLU BackwardLayer
    • Hyperbolic Tangent Forward Layer
    • Hyperbolic Tangent Backward Layer
    • Batch Normalization Forward Layer
    • Batch Normalization Backward Layer
    • Local-Response Normalization ForwardLayer
    • Local-Response Normalization Backward Layer
    • Local-Contrast Normalization ForwardLayer
    • Local-Contrast Normalization Backward Layer
    • Dropout ForwardLayer
    • Dropout BackwardLayer
    • 1D Max Pooling Forward Layer
    • 1D Max Pooling Backward Layer
    • 2D Max Pooling Forward Layer
    • 2D Max Pooling Backward Layer
    • 3D Max Pooling Forward Layer
    • 3D Max Pooling Backward Layer
    • 1D Average Pooling Forward Layer
    • 1D Average Pooling Backward Layer
    • 2D Average Pooling Forward Layer
    • 2D Average Pooling Backward Layer
    • 3D Average Pooling Forward Layer
    • 3D Average Pooling Backward Layer
    • 2D Stochastic Pooling Forward Layer
    • 2D Stochastic Pooling Backward Layer
    • 2D Spatial Pyramid Pooling ForwardLayer
    • 2D Spatial Pyramid Pooling BackwardLayer
    • 2D Convolution Forward Layer
    • 2D Convolution Backward Layer
    • 2D Transposed Convolution ForwardLayer
    • 2D Transposed Convolution BackwardLayer
    • 2D Locally-connected Forward Layer
    • 2D Locally-connected Backward Layer
    • Reshape ForwardLayer
    • Reshape BackwardLayer
    • Concat ForwardLayer
    • Concat BackwardLayer
    • Split Forward Layer
    • Split Backward Layer
    • Softmax ForwardLayer
    • Softmax BackwardLayer
    • Loss Forward Layer
    • Loss Backward Layer
    • Loss Softmax Cross-entropy ForwardLayer
    • Loss Softmax Cross-entropy BackwardLayer
    • Loss Logistic Cross-entropy ForwardLayer
    • Loss Logistic Cross-entropy BackwardLayer
    • Exponential Linear Unit Forward Layer
    • Exponential Linear Unit Backward Layer
posted @ 2018-09-25 20:15  bonelee  阅读(529)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3