Intel DAAL AI加速——神经网络
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | # file: neural_net_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== # # ! Content: # ! Python example of neural network training and scoring # !***************************************************************************** # ## <a name="DAAL-EXAMPLE-PY-NEURAL_NET_DENSE_BATCH"></a> ## \example neural_net_dense_batch.py # import os import sys import numpy as np from daal.algorithms.neural_networks import initializers from daal.algorithms.neural_networks import layers from daal.algorithms import optimization_solver from daal.algorithms.neural_networks import training, prediction from daal.data_management import NumericTable, HomogenNumericTable utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert( 0 , utils_folder) from utils import printTensors, readTensorFromCSV # Input data set parameters trainDatasetFile = os.path.join( ".." , "data" , "batch" , "neural_network_train.csv" ) trainGroundTruthFile = os.path.join( ".." , "data" , "batch" , "neural_network_train_ground_truth.csv" ) testDatasetFile = os.path.join( ".." , "data" , "batch" , "neural_network_test.csv" ) testGroundTruthFile = os.path.join( ".." , "data" , "batch" , "neural_network_test_ground_truth.csv" ) fc1 = 0 fc2 = 1 sm1 = 2 batchSize = 10 def configureNet(): # Create layers of the neural network # Create fully-connected layer and initialize layer parameters fullyConnectedLayer1 = layers.fullyconnected.Batch( 5 ) fullyConnectedLayer1.parameter.weightsInitializer = initializers.uniform.Batch( - 0.001 , 0.001 ) fullyConnectedLayer1.parameter.biasesInitializer = initializers.uniform.Batch( 0 , 0.5 ) # Create fully-connected layer and initialize layer parameters fullyConnectedLayer2 = layers.fullyconnected.Batch( 2 ) fullyConnectedLayer2.parameter.weightsInitializer = initializers.uniform.Batch( 0.5 , 1 ) fullyConnectedLayer2.parameter.biasesInitializer = initializers.uniform.Batch( 0.5 , 1 ) # Create softmax layer and initialize layer parameters softmaxCrossEntropyLayer = layers.loss.softmax_cross.Batch() # Create configuration of the neural network with layers topology = training.Topology() # Add layers to the topology of the neural network topology.push_back(fullyConnectedLayer1) topology.push_back(fullyConnectedLayer2) topology.push_back(softmaxCrossEntropyLayer) topology.get(fc1).addNext(fc2) topology.get(fc2).addNext(sm1) return topology def trainModel(): # Read training data set from a .csv file and create a tensor to store input data trainingData = readTensorFromCSV(trainDatasetFile) trainingGroundTruth = readTensorFromCSV(trainGroundTruthFile, True ) sgdAlgorithm = optimization_solver.sgd.Batch(fptype = np.float32) # Set learning rate for the optimization solver used in the neural network learningRate = 0.001 sgdAlgorithm.parameter.learningRateSequence = HomogenNumericTable( 1 , 1 , NumericTable.doAllocate, learningRate) # Set the batch size for the neural network training sgdAlgorithm.parameter.batchSize = batchSize sgdAlgorithm.parameter.nIterations = int (trainingData.getDimensionSize( 0 ) / sgdAlgorithm.parameter.batchSize) # Create an algorithm to train neural network net = training.Batch(sgdAlgorithm) sampleSize = trainingData.getDimensions() sampleSize[ 0 ] = batchSize # Configure the neural network topology = configureNet() net.initialize(sampleSize, topology) # Pass a training data set and dependent values to the algorithm net. input .setInput(training.data, trainingData) net. input .setInput(training.groundTruth, trainingGroundTruth) # Run the neural network training and retrieve training model trainingModel = net.compute().get(training.model) # return prediction model return trainingModel.getPredictionModel_Float32() def testModel(predictionModel): # Read testing data set from a .csv file and create a tensor to store input data predictionData = readTensorFromCSV(testDatasetFile) # Create an algorithm to compute the neural network predictions net = prediction.Batch() net.parameter.batchSize = predictionData.getDimensionSize( 0 ) # Set input objects for the prediction neural network net. input .setModelInput(prediction.model, predictionModel) net. input .setTensorInput(prediction.data, predictionData) # Run the neural network prediction # and return results of the neural network prediction return net.compute() def printResults(predictionResult): # Read testing ground truth from a .csv file and create a tensor to store the data predictionGroundTruth = readTensorFromCSV(testGroundTruthFile) printTensors(predictionGroundTruth, predictionResult.getResult(prediction.prediction), "Ground truth" , "Neural network predictions: each class probability" , "Neural network classification results (first 20 observations):" , 20 ) topology = "" if __name__ = = "__main__" : predictionModel = trainModel() predictionResult = testModel(predictionModel) printResults(predictionResult) |
目前支持的
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-09-25 Vim 删除不包含指定字符串的行及统计匹配个数
2017-09-25 pandas入门10分钟——serries其实就是data frame的一列数据
2017-09-25 转载-让PIP源使用国内镜像,提升下载速度和安装成功率