Intel DAAL AI加速 ——传统决策树和随机森林
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | # file: dt_cls_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-DT_CLS_DENSE_BATCH"></a> ## \example dt_cls_dense_batch.py import os import sys from daal.algorithms.decision_tree.classification import prediction, training from daal.algorithms import classifier from daal.data_management import ( FileDataSource, DataSourceIface, NumericTableIface, HomogenNumericTable, MergedNumericTable ) utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert( 0 , utils_folder) from utils import printNumericTables DAAL_PREFIX = os.path.join( '..' , 'data' ) # Input data set parameters trainDatasetFileName = os.path.join(DAAL_PREFIX, 'batch' , 'decision_tree_train.csv' ) pruneDatasetFileName = os.path.join(DAAL_PREFIX, 'batch' , 'decision_tree_prune.csv' ) testDatasetFileName = os.path.join(DAAL_PREFIX, 'batch' , 'decision_tree_test.csv' ) nFeatures = 5 nClasses = 5 # Model object for the decision tree classification algorithm model = None predictionResult = None testGroundTruth = None def trainModel(): global model # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file trainDataSource = FileDataSource( trainDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for training data and labels trainData = HomogenNumericTable(nFeatures, 0 , NumericTableIface.notAllocate) trainGroundTruth = HomogenNumericTable( 1 , 0 , NumericTableIface.notAllocate) mergedData = MergedNumericTable(trainData, trainGroundTruth) # Retrieve the data from the input file trainDataSource.loadDataBlock(mergedData) # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file pruneDataSource = FileDataSource( pruneDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for pruning data and labels pruneData = HomogenNumericTable(nFeatures, 0 , NumericTableIface.notAllocate) pruneGroundTruth = HomogenNumericTable( 1 , 0 , NumericTableIface.notAllocate) pruneMergedData = MergedNumericTable(pruneData, pruneGroundTruth) # Retrieve the data from the input file pruneDataSource.loadDataBlock(pruneMergedData) # Create an algorithm object to train the decision tree classification model algorithm = training.Batch(nClasses) # Pass the training data set and dependent values to the algorithm algorithm. input . set (classifier.training.data, trainData) algorithm. input . set (classifier.training.labels, trainGroundTruth) algorithm. input .setTable(training.dataForPruning, pruneData) algorithm. input .setTable(training.labelsForPruning, pruneGroundTruth) # Train the decision tree classification model and retrieve the results of the training algorithm trainingResult = algorithm.compute() model = trainingResult.get(classifier.training.model) def testModel(): global testGroundTruth, predictionResult # Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file testDataSource = FileDataSource( testDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for testing data and labels testData = HomogenNumericTable(nFeatures, 0 , NumericTableIface.notAllocate) testGroundTruth = HomogenNumericTable( 1 , 0 , NumericTableIface.notAllocate) mergedData = MergedNumericTable(testData, testGroundTruth) # Retrieve the data from input file testDataSource.loadDataBlock(mergedData) # Create algorithm objects for decision tree classification prediction with the default method algorithm = prediction.Batch() # Pass the testing data set and trained model to the algorithm #print("Number of columns: {}".format(testData.getNumberOfColumns())) algorithm. input .setTable(classifier.prediction.data, testData) algorithm. input .setModel(classifier.prediction.model, model) # Compute prediction results and retrieve algorithm results # (Result class from classifier.prediction) predictionResult = algorithm.compute() def printResults(): printNumericTables( testGroundTruth, predictionResult.get(classifier.prediction.prediction), "Ground truth" , "Classification results" , "Decision tree classification results (first 20 observations):" , 20 , flt64 = False ) if __name__ = = "__main__" : trainModel() testModel() printResults() |
随机森林的:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | # file: df_cls_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-DF_CLS_DENSE_BATCH"></a> ## \example df_cls_dense_batch.py import os import sys from daal.algorithms import decision_forest from daal.algorithms.decision_forest.classification import prediction, training from daal.algorithms import classifier from daal.data_management import ( FileDataSource, DataSourceIface, NumericTableIface, HomogenNumericTable, MergedNumericTable, features ) utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert( 0 , utils_folder) from utils import printNumericTable, printNumericTables DAAL_PREFIX = os.path.join( '..' , 'data' ) # Input data set parameters trainDatasetFileName = os.path.join(DAAL_PREFIX, 'batch' , 'df_classification_train.csv' ) testDatasetFileName = os.path.join(DAAL_PREFIX, 'batch' , 'df_classification_test.csv' ) nFeatures = 3 nClasses = 5 # Decision forest parameters nTrees = 10 minObservationsInLeafNode = 8 # Model object for the decision forest classification algorithm model = None predictionResult = None testGroundTruth = None def trainModel(): global model # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file trainDataSource = FileDataSource( trainDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for training data and labels trainData = HomogenNumericTable(nFeatures, 0 , NumericTableIface.notAllocate) trainGroundTruth = HomogenNumericTable( 1 , 0 , NumericTableIface.notAllocate) mergedData = MergedNumericTable(trainData, trainGroundTruth) # Retrieve the data from the input file trainDataSource.loadDataBlock(mergedData) # Get the dictionary and update it with additional information about data dict = trainData.getDictionary() # Add a feature type to the dictionary dict [ 0 ].featureType = features.DAAL_CONTINUOUS dict [ 1 ].featureType = features.DAAL_CONTINUOUS dict [ 2 ].featureType = features.DAAL_CATEGORICAL # Create an algorithm object to train the decision forest classification model algorithm = training.Batch(nClasses) algorithm.parameter.nTrees = nTrees algorithm.parameter.minObservationsInLeafNode = minObservationsInLeafNode algorithm.parameter.featuresPerNode = nFeatures algorithm.parameter.varImportance = decision_forest.training.MDI algorithm.parameter.resultsToCompute = decision_forest.training.computeOutOfBagError # Pass the training data set and dependent values to the algorithm algorithm. input . set (classifier.training.data, trainData) algorithm. input . set (classifier.training.labels, trainGroundTruth) # Train the decision forest classification model and retrieve the results of the training algorithm trainingResult = algorithm.compute() model = trainingResult.get(classifier.training.model) printNumericTable(trainingResult.getTable(training.variableImportance), "Variable importance results: " ) printNumericTable(trainingResult.getTable(training.outOfBagError), "OOB error: " ) def testModel(): global testGroundTruth, predictionResult # Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file testDataSource = FileDataSource( testDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for testing data and labels testData = HomogenNumericTable(nFeatures, 0 , NumericTableIface.notAllocate) testGroundTruth = HomogenNumericTable( 1 , 0 , NumericTableIface.notAllocate) mergedData = MergedNumericTable(testData, testGroundTruth) # Retrieve the data from input file testDataSource.loadDataBlock(mergedData) # Get the dictionary and update it with additional information about data dict = testData.getDictionary() # Add a feature type to the dictionary dict [ 0 ].featureType = features.DAAL_CONTINUOUS dict [ 1 ].featureType = features.DAAL_CONTINUOUS dict [ 2 ].featureType = features.DAAL_CATEGORICAL # Create algorithm objects for decision forest classification prediction with the default method algorithm = prediction.Batch(nClasses) # Pass the testing data set and trained model to the algorithm algorithm. input .setTable(classifier.prediction.data, testData) algorithm. input .setModel(classifier.prediction.model, model) # Compute prediction results and retrieve algorithm results # (Result class from classifier.prediction) predictionResult = algorithm.compute() def printResults(): printNumericTable(predictionResult.get(classifier.prediction.prediction), "Decision forest prediction results (first 10 rows):" , 10 ) printNumericTable(testGroundTruth, "Ground truth (first 10 rows):" , 10 ); if __name__ = = "__main__" : trainModel() testModel() printResults() |
标签:
其他
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-09-25 Vim 删除不包含指定字符串的行及统计匹配个数
2017-09-25 pandas入门10分钟——serries其实就是data frame的一列数据
2017-09-25 转载-让PIP源使用国内镜像,提升下载速度和安装成功率