Intel DAAL AI加速 ——传统决策树和随机森林
# file: dt_cls_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-DT_CLS_DENSE_BATCH"></a> ## \example dt_cls_dense_batch.py import os import sys from daal.algorithms.decision_tree.classification import prediction, training from daal.algorithms import classifier from daal.data_management import ( FileDataSource, DataSourceIface, NumericTableIface, HomogenNumericTable, MergedNumericTable ) utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert(0, utils_folder) from utils import printNumericTables DAAL_PREFIX = os.path.join('..', 'data') # Input data set parameters trainDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'decision_tree_train.csv') pruneDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'decision_tree_prune.csv') testDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'decision_tree_test.csv') nFeatures = 5 nClasses = 5 # Model object for the decision tree classification algorithm model = None predictionResult = None testGroundTruth = None def trainModel(): global model # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file trainDataSource = FileDataSource( trainDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for training data and labels trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate) trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate) mergedData = MergedNumericTable(trainData, trainGroundTruth) # Retrieve the data from the input file trainDataSource.loadDataBlock(mergedData) # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file pruneDataSource = FileDataSource( pruneDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for pruning data and labels pruneData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate) pruneGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate) pruneMergedData = MergedNumericTable(pruneData, pruneGroundTruth) # Retrieve the data from the input file pruneDataSource.loadDataBlock(pruneMergedData) # Create an algorithm object to train the decision tree classification model algorithm = training.Batch(nClasses) # Pass the training data set and dependent values to the algorithm algorithm.input.set(classifier.training.data, trainData) algorithm.input.set(classifier.training.labels, trainGroundTruth) algorithm.input.setTable(training.dataForPruning, pruneData) algorithm.input.setTable(training.labelsForPruning, pruneGroundTruth) # Train the decision tree classification model and retrieve the results of the training algorithm trainingResult = algorithm.compute() model = trainingResult.get(classifier.training.model) def testModel(): global testGroundTruth, predictionResult # Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file testDataSource = FileDataSource( testDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for testing data and labels testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate) testGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate) mergedData = MergedNumericTable(testData, testGroundTruth) # Retrieve the data from input file testDataSource.loadDataBlock(mergedData) # Create algorithm objects for decision tree classification prediction with the default method algorithm = prediction.Batch() # Pass the testing data set and trained model to the algorithm #print("Number of columns: {}".format(testData.getNumberOfColumns())) algorithm.input.setTable(classifier.prediction.data, testData) algorithm.input.setModel(classifier.prediction.model, model) # Compute prediction results and retrieve algorithm results # (Result class from classifier.prediction) predictionResult = algorithm.compute() def printResults(): printNumericTables( testGroundTruth, predictionResult.get(classifier.prediction.prediction), "Ground truth", "Classification results", "Decision tree classification results (first 20 observations):", 20, flt64=False ) if __name__ == "__main__": trainModel() testModel() printResults()
随机森林的:
# file: df_cls_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-DF_CLS_DENSE_BATCH"></a> ## \example df_cls_dense_batch.py import os import sys from daal.algorithms import decision_forest from daal.algorithms.decision_forest.classification import prediction, training from daal.algorithms import classifier from daal.data_management import ( FileDataSource, DataSourceIface, NumericTableIface, HomogenNumericTable, MergedNumericTable, features ) utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert(0, utils_folder) from utils import printNumericTable, printNumericTables DAAL_PREFIX = os.path.join('..', 'data') # Input data set parameters trainDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'df_classification_train.csv') testDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'df_classification_test.csv') nFeatures = 3 nClasses = 5 # Decision forest parameters nTrees = 10 minObservationsInLeafNode = 8 # Model object for the decision forest classification algorithm model = None predictionResult = None testGroundTruth = None def trainModel(): global model # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file trainDataSource = FileDataSource( trainDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for training data and labels trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate) trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate) mergedData = MergedNumericTable(trainData, trainGroundTruth) # Retrieve the data from the input file trainDataSource.loadDataBlock(mergedData) # Get the dictionary and update it with additional information about data dict = trainData.getDictionary() # Add a feature type to the dictionary dict[0].featureType = features.DAAL_CONTINUOUS dict[1].featureType = features.DAAL_CONTINUOUS dict[2].featureType = features.DAAL_CATEGORICAL # Create an algorithm object to train the decision forest classification model algorithm = training.Batch(nClasses) algorithm.parameter.nTrees = nTrees algorithm.parameter.minObservationsInLeafNode = minObservationsInLeafNode algorithm.parameter.featuresPerNode = nFeatures algorithm.parameter.varImportance = decision_forest.training.MDI algorithm.parameter.resultsToCompute = decision_forest.training.computeOutOfBagError # Pass the training data set and dependent values to the algorithm algorithm.input.set(classifier.training.data, trainData) algorithm.input.set(classifier.training.labels, trainGroundTruth) # Train the decision forest classification model and retrieve the results of the training algorithm trainingResult = algorithm.compute() model = trainingResult.get(classifier.training.model) printNumericTable(trainingResult.getTable(training.variableImportance), "Variable importance results: ") printNumericTable(trainingResult.getTable(training.outOfBagError), "OOB error: ") def testModel(): global testGroundTruth, predictionResult # Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file testDataSource = FileDataSource( testDatasetFileName, DataSourceIface.notAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Create Numeric Tables for testing data and labels testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate) testGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate) mergedData = MergedNumericTable(testData, testGroundTruth) # Retrieve the data from input file testDataSource.loadDataBlock(mergedData) # Get the dictionary and update it with additional information about data dict = testData.getDictionary() # Add a feature type to the dictionary dict[0].featureType = features.DAAL_CONTINUOUS dict[1].featureType = features.DAAL_CONTINUOUS dict[2].featureType = features.DAAL_CATEGORICAL # Create algorithm objects for decision forest classification prediction with the default method algorithm = prediction.Batch(nClasses) # Pass the testing data set and trained model to the algorithm algorithm.input.setTable(classifier.prediction.data, testData) algorithm.input.setModel(classifier.prediction.model, model) # Compute prediction results and retrieve algorithm results # (Result class from classifier.prediction) predictionResult = algorithm.compute() def printResults(): printNumericTable(predictionResult.get(classifier.prediction.prediction),"Decision forest prediction results (first 10 rows):",10) printNumericTable(testGroundTruth, "Ground truth (first 10 rows):", 10); if __name__ == "__main__": trainModel() testModel() printResults()