Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库
数据源加速见官方文档(必须使用DAAL自己的库):
可以看到支持的数据源:同数据类型的table(matrix),不同类型的table,以及从DB文件取数据、数据序列化、压缩等。
在这些定制的数据源上,Intel DAAL使用自己底层的CPU进行硬件加速!下面摘自其官方:
Intel DAAL addresses all stages of the data analytics pipeline: preprocessing, transformation, analysis, modeling, validation, and decision-making.
Intel DAAL is developed by the same team as the Intel® Math Kernel Library (Intel® MKL)—the leading math library in the world. This team works closely with Intel® processor architects to squeeze performance from Intel processor-based systems.
Specs at a Glance
Processors | Intel Atom®, Intel Core™, Intel® Xeon®, and Intel® Xeon Phi™ processors and compatible processors |
Languages | Python*, C++, Java* |
Development Tools and Environments |
Microsoft Visual Studio* (Windows*) Eclipse* and CDT* (Linux*) |
Operating Systems | Use the same API for application development on multiple operating systems: Windows, Linux, and macOS* |
统计特征的计算加速例子:
# file: low_order_moms_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a> ## \example low_order_moms_dense_batch.py import os import sys from daal.algorithms import low_order_moments from daal.data_management import FileDataSource, DataSourceIface utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert(0, utils_folder) from utils import printNumericTable DAAL_PREFIX = os.path.join('..', 'data') # Input data set parameters dataFileName = os.path.join(DAAL_PREFIX, 'batch', 'covcormoments_dense.csv') def printResults(res): printNumericTable(res.get(low_order_moments.minimum), "Minimum:") printNumericTable(res.get(low_order_moments.maximum), "Maximum:") printNumericTable(res.get(low_order_moments.sum), "Sum:") printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:") printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:") printNumericTable(res.get(low_order_moments.mean), "Mean:") printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:") printNumericTable(res.get(low_order_moments.variance), "Variance:") printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:") printNumericTable(res.get(low_order_moments.variation), "Variation:") if __name__ == "__main__": # Initialize FileDataSource to retrieve input data from .csv file dataSource = FileDataSource( dataFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Retrieve the data from input file dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode algorithm = low_order_moments.Batch() # Set input arguments of the algorithm algorithm.input.set(low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments res = algorithm.compute() printResults(res)