Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库
数据源加速见官方文档(必须使用DAAL自己的库):
可以看到支持的数据源:同数据类型的table(matrix),不同类型的table,以及从DB文件取数据、数据序列化、压缩等。
在这些定制的数据源上,Intel DAAL使用自己底层的CPU进行硬件加速!下面摘自其官方:
Intel DAAL addresses all stages of the data analytics pipeline: preprocessing, transformation, analysis, modeling, validation, and decision-making.
Intel DAAL is developed by the same team as the Intel® Math Kernel Library (Intel® MKL)—the leading math library in the world. This team works closely with Intel® processor architects to squeeze performance from Intel processor-based systems.
Specs at a Glance
Processors | Intel Atom®, Intel Core™, Intel® Xeon®, and Intel® Xeon Phi™ processors and compatible processors |
Languages | Python*, C++, Java* |
Development Tools and Environments |
Microsoft Visual Studio* (Windows*) Eclipse* and CDT* (Linux*) |
Operating Systems | Use the same API for application development on multiple operating systems: Windows, Linux, and macOS* |
统计特征的计算加速例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # file: low_order_moms_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a> ## \example low_order_moms_dense_batch.py import os import sys from daal.algorithms import low_order_moments from daal.data_management import FileDataSource, DataSourceIface utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert( 0 , utils_folder) from utils import printNumericTable DAAL_PREFIX = os.path.join( '..' , 'data' ) # Input data set parameters dataFileName = os.path.join(DAAL_PREFIX, 'batch' , 'covcormoments_dense.csv' ) def printResults(res): printNumericTable(res.get(low_order_moments.minimum), "Minimum:" ) printNumericTable(res.get(low_order_moments.maximum), "Maximum:" ) printNumericTable(res.get(low_order_moments. sum ), "Sum:" ) printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:" ) printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:" ) printNumericTable(res.get(low_order_moments.mean), "Mean:" ) printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:" ) printNumericTable(res.get(low_order_moments.variance), "Variance:" ) printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:" ) printNumericTable(res.get(low_order_moments.variation), "Variation:" ) if __name__ = = "__main__" : # Initialize FileDataSource to retrieve input data from .csv file dataSource = FileDataSource( dataFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Retrieve the data from input file dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode algorithm = low_order_moments.Batch() # Set input arguments of the algorithm algorithm. input . set (low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments res = algorithm.compute() printResults(res) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-09-25 Vim 删除不包含指定字符串的行及统计匹配个数
2017-09-25 pandas入门10分钟——serries其实就是data frame的一列数据
2017-09-25 转载-让PIP源使用国内镜像,提升下载速度和安装成功率