图算法检测僵尸网络
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | # -*- coding: utf-8 -*- import networkx as nx import matplotlib.pyplot as plt iplist = {} goodiplist = {} #相似度 N = 0.5 #黑客团伙IP最少个数 M = 3 #黑客IP攻击目标最小个数 R = 2 #jarccard系数 def get_len(d1,d2): ds1 = set () for d in d1.keys(): ds1.add(d) ds2 = set () for d in d2.keys(): ds2.add(d) return len (ds1&ds2) / len (ds1|ds2) filename = "../data/etl-ip-domain-train.txt" G = nx.Graph() with open (filename) as f: for line in f: (ip,domain) = line.split( "\t" ) if not ip = = "0.0.0.0" : if not iplist.has_key(ip): iplist[ip] = {} iplist[ip][domain] = 1 for ip in iplist.keys(): if len (iplist[ip]) > = R: goodiplist[ip] = 1 for ip1 in iplist.keys(): for ip2 in iplist.keys(): if not ip1 = = ip2 : weight = get_len(iplist[ip1],iplist[ip2]) if (weight > = N) and (ip1 in goodiplist.keys()) and (ip2 in goodiplist.keys()): #点不存在会自动添加 G.add_edge(ip1,ip2,weight = weight) n_sub_graphs = nx.number_connected_components(G) sub_graphs = nx.connected_component_subgraphs(G) for i,sub_graph in enumerate (sub_graphs): n_nodes = len (sub_graph.nodes()) if n_nodes > = M: print ( "Subgraph {0} has {1} nodes {2}" . format (i,n_nodes,sub_graph.nodes())) nx.draw(G) plt.show() |
标签:
安全分析
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」
2017-07-28 python fuzzy c-means demo
2017-07-28 python matplot 绘图