CC 攻击检测研究现状

网络层ddos 是让去往银行的道路交通变得拥堵,无法使正真要去银行的人到达;常利用协议为网络层的,
如tcp(利用三次握手的响应等待及电脑tcp 连接数限制)等
应用层ddos 则是在到达银行后通过增办、询问业务等等各种“合法要求”来消耗银行的业务资源,如利用
http(查看所有网页、占用资源大的网页如:视频等或让网站处理复杂数据如:校验、计算等)
两者本质都是消耗资源,使服务器无法为真实用户提供服务
Mitigation 缓和hijacked 被劫持,被绑架
1 很严重,检测的难度很大,很难预先阻止,不同的几种ddos 攻击类型
2 相关的工作,介绍了目前基于模式识别的检测方法,主要分成两类,序列化模式识别和统计模式识别,
同时说明了目前方法的缺陷
3 所有已经存在的方法不能检测所有类型的al-ddos 攻击,因为很少特征能够用于分类正常流量和攻击流
量,所以作者使用了深度学习的方法进行特征学习,从有限的样本中得到更多的抽象特征,本论文使用了
栈式自编码的算法进行特征学习
4 目标方法先不说,等后面详细介绍
5 结论经过统计结果得到方法的正确率达到了98.99%

 

 

Three types:
Session flooding: the attacker sends a session connection request at a huge rate than benign
user
Request flooding: in on session, the attacker make a huge number of requests than benign
user
Asymmetric Attack: the attacker makes requests with very high workloads such as
downloading of big files or response to some database intensive query
Sequential pattern recognition:
HsMM: Hidden Semi Markov Model (隐半马尔可夫模型)描述正常网页用户的浏览习惯从合法用户所做
出的请求序列中学习得到,从而预测合法的用户要获取一个页面所做出的一些序列化请求顺序,通过计算
正常用户所做行为的熵当做一个参数去测量用户的合法性
Random walk graph:创建正常用户的随机行走图,通过使用雅可比行列式测量待检测的用户行为和刚才
的随机行走图之间的相似程度来判断合法性
Statistical pattern recognition:
Trust Management: 通过访问用户的ip 地址历史记录,分配给用户信任等级,如果用户在历史记录中表
现良好,那么就会分配给他更高的信任等级

 

Hierarchical Clustering(分层群聚):检测会话泛洪攻击有四个特征
单次会话中平均请求对象大小
请求速度
会话中对象的访问频率
平均转换概率
RFV: 计算正常traffic 和攻击traffic 的熵的不同来检测AL-DDoS 攻击
AutoEncoder:
Deep Learning 最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层
次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每
一层中的权重。自然地,我们就得到了输入I 的几种不同表示(每一层代表一种表示),这些表示就是特
征。自动编码器就是一种尽可能复现输入信号的神经网络。
如上图,我们将input 输入一个encoder 编码器,就会得到。。。

 

posted @ 2018-06-20 18:14  bonelee  阅读(2586)  评论(45编辑  收藏  举报