WAF 强化学习
参考:https://github.com/duoergun0729/3book/tree/master/code/gym-waf
代码:
wafEnv.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | #-*- coding:utf-8 –*- import numpy as np import re import random from gym import spaces import gym from sklearn.model_selection import train_test_split #samples_file="xss-samples.txt" samples_file = "xss-samples-all.txt" samples = [] with open (samples_file) as f: for line in f: line = line.strip( '\n' ) print ( "Add xss sample:" + line) samples.append(line) # 划分训练和测试集合 samples_train, samples_test = train_test_split(samples, test_size = 0.4 ) class Xss_Manipulator( object ): def __init__( self ): self .dim = 0 self .name = "" #常见免杀动作: # 随机字符转16进制 比如: a转换成a; # 随机字符转10进制 比如: a转换成a; # 随机字符转10进制并假如大量0 比如: a转换成a; # 插入注释 比如: /*abcde*/ # 插入Tab # 插入回车 # 开头插入空格 比如: /**/ # 大小写混淆 # 插入 \00 也会被浏览器忽略 ACTION_TABLE = { #'charTo16': 'charTo16', #'charTo10': 'charTo10', #'charTo10Zero': 'charTo10Zero', 'addComment' : 'addComment' , 'addTab' : 'addTab' , 'addZero' : 'addZero' , 'addEnter' : 'addEnter' , } def charTo16( self , str ,seed = None ): #print("charTo16") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #print("search --> matchObj.group() : ", matchObjs) modify_char = random.choice(matchObjs) #字符转ascii值ord(modify_char #modify_char_10=ord(modify_char) modify_char_16 = "&#{};" . format ( hex ( ord (modify_char))) #print("modify_char %s to %s" % (modify_char,modify_char_10)) #替换 str = re.sub(modify_char, modify_char_16, str ,count = random.randint( 1 , 3 )) return str def charTo10( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #print("search --> matchObj.group() : ", matchObjs) modify_char = random.choice(matchObjs) #字符转ascii值ord(modify_char #modify_char_10=ord(modify_char) modify_char_10 = "&#{};" . format ( ord (modify_char)) #print("modify_char %s to %s" % (modify_char,modify_char_10)) #替换 str = re.sub(modify_char, modify_char_10, str ) return str def charTo10Zero( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #print("search --> matchObj.group() : ", matchObjs) modify_char = random.choice(matchObjs) #字符转ascii值ord(modify_char #modify_char_10=ord(modify_char) modify_char_10 = "�{};" . format ( ord (modify_char)) #print("modify_char %s to %s" % (modify_char,modify_char_10)) #替换 str = re.sub(modify_char, modify_char_10, str ) return str def addComment( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #选择替换的字符 modify_char = random.choice(matchObjs) #生成替换的内容 #modify_char_comment="{}/*a{}*/".format(modify_char,modify_char) modify_char_comment = "{}/*8888*/" . format (modify_char) #替换 str = re.sub(modify_char, modify_char_comment, str ) return str def addTab( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #选择替换的字符 modify_char = random.choice(matchObjs) #生成替换的内容 modify_char_tab = " {}" . format (modify_char) #替换 str = re.sub(modify_char, modify_char_tab, str ) return str def addZero( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #选择替换的字符 modify_char = random.choice(matchObjs) #生成替换的内容 modify_char_zero = "\\00{}" . format (modify_char) #替换 str = re.sub(modify_char, modify_char_zero, str ) return str def addEnter( self , str ,seed = None ): #print("charTo10") matchObjs = re.findall(r '[a-qA-Q]' , str , re.M | re.I) if matchObjs: #选择替换的字符 modify_char = random.choice(matchObjs) #生成替换的内容 modify_char_enter = "\\r\\n{}" . format (modify_char) #替换 str = re.sub(modify_char, modify_char_enter, str ) return str def modify( self , str , _action, seed = 6 ): print ( "Do action :%s" % _action) action_func = Xss_Manipulator().__getattribute__(_action) return action_func( str ,seed) ACTION_LOOKUP = {i: act for i, act in enumerate (Xss_Manipulator.ACTION_TABLE.keys())} #<embed src="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=="> #a="get";b="URL(ja\"";c="vascr";d="ipt:ale";e="rt('XSS');\")";eval(a+b+c+d+e); #"><script>alert(String.fromCharCode(66, 108, 65, 99, 75, 73, 99, 101))</script> #<input onblur=write(XSS) autofocus><input autofocus> #<math><a xlink:href="//jsfiddle.net/t846h/">click #<h1><font color=blue>hellox worldss</h1> #LOL<style>*{/*all*/color/*all*/:/*all*/red/*all*/;/[0]*IE,Safari*[0]/color:green;color:bl/*IE*/ue;}</style> class Waf_Check( object ): def __init__( self ): self .name = "Waf_Check" self .regXSS = r '(prompt|alert|confirm|expression])' \ r '|(javascript|script|eval)' \ r '|(onload|onerror|onfocus|onclick|ontoggle|onmousemove|ondrag)' \ r '|(String.fromCharCode)' \ r '|(;base64,)' \ r '|(onblur=write)' \ r '|(xlink:href)' \ r '|(color=)' #self.regXSS = r'javascript' def check_xss( self , str ): isxss = False #忽略大小写 if re.search( self .regXSS, str ,re.IGNORECASE): isxss = True return isxss class Features( object ): def __init__( self ): self .dim = 0 self .name = "" self .dtype = np.float32 def byte_histogram( self , str ): #bytes=np.array(list(str)) bytes = [ ord (ch) for ch in list ( str )] #print(bytes) h = np.bincount(bytes, minlength = 256 ) return np.concatenate([ [h. sum ()], # total size of the byte stream h.astype( self .dtype).flatten() / h. sum (), # normalized the histogram ]) def extract( self , str ): featurevectors = [ [ self .byte_histogram( str )] ] return np.concatenate(featurevectors) class WafEnv_v0(gym.Env): metadata = { 'render.modes' : [ 'human' , 'rgb_array' ], } def __init__( self ): self .action_space = spaces.Discrete( len (ACTION_LOOKUP)) #xss样本特征集合 #self.samples=[] #当前处理的样本 self .current_sample = "" #self.current_state=0 self .features_extra = Features() self .waf_checker = Waf_Check() #根据动作修改当前样本免杀 self .xss_manipulatorer = Xss_Manipulator() self ._reset() def _seed( self , num): pass def _step( self , action): r = 0 is_gameover = False #print("current sample:%s" % self.current_sample) _action = ACTION_LOOKUP[action] #print("action is %s" % _action) self .current_sample = self .xss_manipulatorer.modify( self .current_sample,_action) #print("change current sample to %s" % self.current_sample) if not self .waf_checker.check_xss( self .current_sample): #给奖励 r = 10 is_gameover = True print ( "Good!!!!!!!avoid waf:%s" % self .current_sample) self .observation_space = self .features_extra.extract( self .current_sample) return self .observation_space, r,is_gameover,{} def _reset( self ): self .current_sample = random.choice(samples_train) print ( "reset current_sample=" + self .current_sample) self .observation_space = self .features_extra.extract( self .current_sample) return self .observation_space def render( self , mode = 'human' , close = False ): return |
主代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | #-*- coding:utf-8 –*- import gym import time import random import gym_waf.envs.wafEnv import pickle import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, ELU, Dropout, BatchNormalization from keras.optimizers import Adam, SGD, RMSprop from rl.agents.dqn import DQNAgent from rl.agents.sarsa import SarsaAgent from rl.policy import EpsGreedyQPolicy from rl.memory import SequentialMemory from gym_waf.envs.wafEnv import samples_test,samples_train # from gym_waf.envs.features import Features from gym_waf.envs.waf import Waf_Check from gym_waf.envs.xss_manipulator import Xss_Manipulator from keras.callbacks import TensorBoard ENV_NAME = 'Waf-v0' #尝试的最大次数 nb_max_episode_steps_train = 50 nb_max_episode_steps_test = 3 ACTION_LOOKUP = {i: act for i, act in enumerate (Xss_Manipulator.ACTION_TABLE.keys())} class Features( object ): def __init__( self ): self .dim = 0 self .name = "" self .dtype = np.float32 def byte_histogram( self , str ): #bytes=np.array(list(str)) bytes = [ ord (ch) for ch in list ( str )] #print(bytes) h = np.bincount(bytes, minlength = 256 ) return np.concatenate([ [h. sum ()], # total size of the byte stream h.astype( self .dtype).flatten() / h. sum (), # normalized the histogram ]) def extract( self , str ): featurevectors = [ [ self .byte_histogram( str )] ] return np.concatenate(featurevectors) def generate_dense_model(input_shape, layers, nb_actions): model = Sequential() model.add(Flatten(input_shape = input_shape)) model.add(Dropout( 0.1 )) for layer in layers: model.add(Dense(layer)) model.add(BatchNormalization()) model.add(ELU(alpha = 1.0 )) model.add(Dense(nb_actions)) model.add(Activation( 'linear' )) print (model.summary()) return model def train_dqn_model(layers, rounds = 10000 ): env = gym.make(ENV_NAME) env.seed( 1 ) nb_actions = env.action_space.n window_length = 1 print ( "nb_actions:" ) print (nb_actions) print ( "env.observation_space.shape:" ) print (env.observation_space.shape) model = generate_dense_model((window_length,) + env.observation_space.shape, layers, nb_actions) policy = EpsGreedyQPolicy() memory = SequentialMemory(limit = 256 , ignore_episode_boundaries = False , window_length = window_length) agent = DQNAgent(model = model, nb_actions = nb_actions, memory = memory, nb_steps_warmup = 16 , enable_double_dqn = True , enable_dueling_network = True , dueling_type = 'avg' , target_model_update = 1e - 2 , policy = policy, batch_size = 16 ) agent. compile (RMSprop(lr = 1e - 3 ), metrics = [ 'mae' ]) #tb_cb = TensorBoard(log_dir='/tmp/log', write_images=1, histogram_freq=1) #cbks = [tb_cb] # play the game. learn something! #nb_max_episode_steps 一次学习周期中最大步数 agent.fit(env, nb_steps = rounds, nb_max_episode_steps = nb_max_episode_steps_train,visualize = False , verbose = 2 ) #print("#################Start Test%################") #agent.test(env, nb_episodes=100) test_samples = samples_test features_extra = Features() waf_checker = Waf_Check() # 根据动作修改当前样本免杀 xss_manipulatorer = Xss_Manipulator() success = 0 sum = 0 shp = ( 1 ,) + tuple (model.input_shape[ 1 :]) for sample in samples_test: #print(sample) sum + = 1 for _ in range (nb_max_episode_steps_test): if not waf_checker.check_xss(sample) : success + = 1 print (sample) break f = features_extra.extract(sample).reshape(shp) act_values = model.predict(f) action = np.argmax(act_values[ 0 ]) sample = xss_manipulatorer.modify(sample,ACTION_LOOKUP[action]) print ( "Sum:{} Success:{}" . format ( sum ,success)) return agent, model if __name__ = = '__main__' : agent1, model1 = train_dqn_model([ 5 , 2 ], rounds = 1000 ) model1.save( 'waf-v0.h5' , overwrite = True ) |
效果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | reset current_sample = <img src = `xx:xx`onerror = alert( 1 )> Do action :addEnter Do action :addComment Good!!!!!!!avoid waf:<img src = `xx:xx` one / * 8888 * / rr or = ale / * 8888 * / rt( 1 )> 987 / 1000 : episode: 221 , duration: 0.016s , episode steps: 2 , steps per second: 122 , episode reward: 10.000 , mean reward: 5.000 [ 0.000 , 10.000 ], mean action: 1.500 [ 0.000 , 3.000 ], mean observation: 0.179 [ 0.000 , 53.000 ], loss: 1.608465 , mean_absolute_error: 3.369818 , mean_q: 7.756353 reset current_sample = <! - - <img src = "--><img src=x onerror=alert(123)//" > Do action :addEnter Do action :addEnter Do action :addEnter Do action :addZero Do action :addEnter Do action :addEnter Do action :addEnter Do action :addEnter Do action :addEnter Good!!!!!!!avoid waf:<! - - < |
标签:
安全分析
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」