神经网络卷积层 要回计算output的维度 input 28 卷积是3x3 则output是26 但是channel是卷积核的数量

 

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

 

posted @ 2018-06-06 15:28  bonelee  阅读(520)  评论(0编辑  收藏  举报